Calculus Examples
dydx+1xy=x4y2
Step 1
To solve the differential equation, let v=y1-n where n is the exponent of y2.
v=y-1
Step 2
Solve the equation for y.
y=v-1
Step 3
Take the derivative of y with respect to x.
y′=v-1
Step 4
Step 4.1
Take the derivative of v-1.
y′=ddx[v-1]
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bn.
y′=ddx[1v]
Step 4.3
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=1 and g(x)=v.
y′=vddx[1]-1⋅1ddx[v]v2
Step 4.4
Differentiate using the Constant Rule.
Step 4.4.1
Multiply -1 by 1.
y′=vddx[1]-ddx[v]v2
Step 4.4.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
y′=v⋅0-ddx[v]v2
Step 4.4.3
Simplify the expression.
Step 4.4.3.1
Multiply v by 0.
y′=0-ddx[v]v2
Step 4.4.3.2
Subtract ddx[v] from 0.
y′=-ddx[v]v2
Step 4.4.3.3
Move the negative in front of the fraction.
y′=-ddx[v]v2
y′=-ddx[v]v2
y′=-ddx[v]v2
Step 4.5
Rewrite ddx[v] as v′.
y′=-v′v2
y′=-v′v2
Step 5
Substitute -v′v2 for dydx and v-1 for y in the original equation dydx+1xy=x4y2.
-v′v2+1xv-1=x4(v-1)2
Step 6
Step 6.1
Rewrite the differential equation as dvdx+M(x)v=Q(x).
Step 6.1.1
Multiply each term in -dvdxv2+1xv-1=x4(v-1)2 by -v2 to eliminate the fractions.
Step 6.1.1.1
Multiply each term in -dvdxv2+1xv-1=x4(v-1)2 by -v2.
-dvdxv2(-v2)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2
Simplify the left side.
Step 6.1.1.2.1
Simplify each term.
Step 6.1.1.2.1.1
Cancel the common factor of v2.
Step 6.1.1.2.1.1.1
Move the leading negative in -dvdxv2 into the numerator.
-dvdxv2(-v2)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.2
Factor v2 out of -v2.
-dvdxv2(v2⋅-1)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.3
Cancel the common factor.
-dvdxv2(v2⋅-1)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.4
Rewrite the expression.
-dvdx⋅-1+1xv-1(-v2)=x4(v-1)2(-v2)
-dvdx⋅-1+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.2
Multiply -1 by -1.
1dvdx+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.3
Multiply dvdx by 1.
dvdx+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.4
Rewrite using the commutative property of multiplication.
dvdx-1xv-1v2=x4(v-1)2(-v2)
Step 6.1.1.2.1.5
Multiply v-1 by v2 by adding the exponents.
Step 6.1.1.2.1.5.1
Move v2.
dvdx-1x(v2v-1)=x4(v-1)2(-v2)
Step 6.1.1.2.1.5.2
Use the power rule aman=am+n to combine exponents.
dvdx-1xv2-1=x4(v-1)2(-v2)
Step 6.1.1.2.1.5.3
Subtract 1 from 2.
dvdx-1xv1=x4(v-1)2(-v2)
dvdx-1xv1=x4(v-1)2(-v2)
Step 6.1.1.2.1.6
Simplify -1xv1.
dvdx-1xv=x4(v-1)2(-v2)
Step 6.1.1.2.1.7
Combine v and 1x.
dvdx-vx=x4(v-1)2(-v2)
dvdx-vx=x4(v-1)2(-v2)
dvdx-vx=x4(v-1)2(-v2)
Step 6.1.1.3
Simplify the right side.
Step 6.1.1.3.1
Rewrite using the commutative property of multiplication.
dvdx-vx=-x4(v-1)2v2
Step 6.1.1.3.2
Multiply the exponents in (v-1)2.
Step 6.1.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
dvdx-vx=-x4v-1⋅2v2
Step 6.1.1.3.2.2
Multiply -1 by 2.
dvdx-vx=-x4v-2v2
dvdx-vx=-x4v-2v2
Step 6.1.1.3.3
Multiply v-2 by v2 by adding the exponents.
Step 6.1.1.3.3.1
Move v2.
dvdx-vx=-x4(v2v-2)
Step 6.1.1.3.3.2
Use the power rule aman=am+n to combine exponents.
dvdx-vx=-x4v2-2
Step 6.1.1.3.3.3
Subtract 2 from 2.
dvdx-vx=-x4v0
dvdx-vx=-x4v0
Step 6.1.1.3.4
Simplify -x4v0.
dvdx-vx=-x4
dvdx-vx=-x4
dvdx-vx=-x4
Step 6.1.2
Factor v out of -vx.
dvdx+v(-1x)=-x4
Step 6.1.3
Reorder v and -1x.
dvdx-1xv=-x4
dvdx-1xv=-x4
Step 6.2
The integrating factor is defined by the formula e∫P(x)dx, where P(x)=-1x.
Step 6.2.1
Set up the integration.
e∫-1xdx
Step 6.2.2
Integrate -1x.
Step 6.2.2.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-∫1xdx
Step 6.2.2.2
The integral of 1x with respect to x is ln(|x|).
e-(ln(|x|)+C)
Step 6.2.2.3
Simplify.
e-ln(|x|)+C
e-ln(|x|)+C
Step 6.2.3
Remove the constant of integration.
e-ln(x)
Step 6.2.4
Use the logarithmic power rule.
eln(x-1)
Step 6.2.5
Exponentiation and log are inverse functions.
x-1
Step 6.2.6
Rewrite the expression using the negative exponent rule b-n=1bn.
1x
1x
Step 6.3
Multiply each term by the integrating factor 1x.
Step 6.3.1
Multiply each term by 1x.
1xdvdx+1x(-1xv)=1x(-x4)
Step 6.3.2
Simplify each term.
Step 6.3.2.1
Combine 1x and dvdx.
dvdxx+1x(-1xv)=1x(-x4)
Step 6.3.2.2
Rewrite using the commutative property of multiplication.
dvdxx-1x(1xv)=1x(-x4)
Step 6.3.2.3
Combine 1x and v.
dvdxx-1x⋅vx=1x(-x4)
Step 6.3.2.4
Multiply -1x⋅vx.
Step 6.3.2.4.1
Multiply vx by 1x.
dvdxx-vx⋅x=1x(-x4)
Step 6.3.2.4.2
Raise x to the power of 1.
dvdxx-vx1x=1x(-x4)
Step 6.3.2.4.3
Raise x to the power of 1.
dvdxx-vx1x1=1x(-x4)
Step 6.3.2.4.4
Use the power rule aman=am+n to combine exponents.
dvdxx-vx1+1=1x(-x4)
Step 6.3.2.4.5
Add 1 and 1.
dvdxx-vx2=1x(-x4)
dvdxx-vx2=1x(-x4)
dvdxx-vx2=1x(-x4)
Step 6.3.3
Rewrite using the commutative property of multiplication.
dvdxx-vx2=-1xx4
Step 6.3.4
Cancel the common factor of x.
Step 6.3.4.1
Move the leading negative in -1x into the numerator.
dvdxx-vx2=-1xx4
Step 6.3.4.2
Factor x out of x4.
dvdxx-vx2=-1x(x⋅x3)
Step 6.3.4.3
Cancel the common factor.
dvdxx-vx2=-1x(x⋅x3)
Step 6.3.4.4
Rewrite the expression.
dvdxx-vx2=-x3
dvdxx-vx2=-x3
dvdxx-vx2=-x3
Step 6.4
Rewrite the left side as a result of differentiating a product.
ddx[1xv]=-x3
Step 6.5
Set up an integral on each side.
∫ddx[1xv]dx=∫-x3dx
Step 6.6
Integrate the left side.
1xv=∫-x3dx
Step 6.7
Integrate the right side.
Step 6.7.1
Since -1 is constant with respect to x, move -1 out of the integral.
1xv=-∫x3dx
Step 6.7.2
By the Power Rule, the integral of x3 with respect to x is 14x4.
1xv=-(14x4+C)
Step 6.7.3
Rewrite -(14x4+C) as -14x4+C.
1xv=-14x4+C
1xv=-14x4+C
Step 6.8
Solve for v.
Step 6.8.1
Combine 1x and v.
vx=-14x4+C
Step 6.8.2
Combine x4 and 14.
vx=-x44+C
Step 6.8.3
Multiply both sides by x.
vxx=(-x44+C)x
Step 6.8.4
Simplify.
Step 6.8.4.1
Simplify the left side.
Step 6.8.4.1.1
Cancel the common factor of x.
Step 6.8.4.1.1.1
Cancel the common factor.
vxx=(-x44+C)x
Step 6.8.4.1.1.2
Rewrite the expression.
v=(-x44+C)x
v=(-x44+C)x
v=(-x44+C)x
Step 6.8.4.2
Simplify the right side.
Step 6.8.4.2.1
Simplify (-x44+C)x.
Step 6.8.4.2.1.1
Apply the distributive property.
v=-x44x+Cx
Step 6.8.4.2.1.2
Multiply -x44x.
Step 6.8.4.2.1.2.1
Combine x and x44.
v=-x⋅x44+Cx
Step 6.8.4.2.1.2.2
Multiply x by x4 by adding the exponents.
Step 6.8.4.2.1.2.2.1
Multiply x by x4.
Step 6.8.4.2.1.2.2.1.1
Raise x to the power of 1.
v=-x1x44+Cx
Step 6.8.4.2.1.2.2.1.2
Use the power rule aman=am+n to combine exponents.
v=-x1+44+Cx
v=-x1+44+Cx
Step 6.8.4.2.1.2.2.2
Add 1 and 4.
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
Step 7
Substitute y-1 for v.
y-1=-x54+Cx