Calculus Examples

Solve the Differential Equation
dydx+1xy=x4y2
Step 1
To solve the differential equation, let v=y1-n where n is the exponent of y2.
v=y-1
Step 2
Solve the equation for y.
y=v-1
Step 3
Take the derivative of y with respect to x.
y=v-1
Step 4
Take the derivative of v-1 with respect to x.
Tap for more steps...
Step 4.1
Take the derivative of v-1.
y=ddx[v-1]
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bn.
y=ddx[1v]
Step 4.3
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=1 and g(x)=v.
y=vddx[1]-11ddx[v]v2
Step 4.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.4.1
Multiply -1 by 1.
y=vddx[1]-ddx[v]v2
Step 4.4.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
y=v0-ddx[v]v2
Step 4.4.3
Simplify the expression.
Tap for more steps...
Step 4.4.3.1
Multiply v by 0.
y=0-ddx[v]v2
Step 4.4.3.2
Subtract ddx[v] from 0.
y=-ddx[v]v2
Step 4.4.3.3
Move the negative in front of the fraction.
y=-ddx[v]v2
y=-ddx[v]v2
y=-ddx[v]v2
Step 4.5
Rewrite ddx[v] as v.
y=-vv2
y=-vv2
Step 5
Substitute -vv2 for dydx and v-1 for y in the original equation dydx+1xy=x4y2.
-vv2+1xv-1=x4(v-1)2
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Rewrite the differential equation as dvdx+M(x)v=Q(x).
Tap for more steps...
Step 6.1.1
Multiply each term in -dvdxv2+1xv-1=x4(v-1)2 by -v2 to eliminate the fractions.
Tap for more steps...
Step 6.1.1.1
Multiply each term in -dvdxv2+1xv-1=x4(v-1)2 by -v2.
-dvdxv2(-v2)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2
Simplify the left side.
Tap for more steps...
Step 6.1.1.2.1
Simplify each term.
Tap for more steps...
Step 6.1.1.2.1.1
Cancel the common factor of v2.
Tap for more steps...
Step 6.1.1.2.1.1.1
Move the leading negative in -dvdxv2 into the numerator.
-dvdxv2(-v2)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.2
Factor v2 out of -v2.
-dvdxv2(v2-1)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.3
Cancel the common factor.
-dvdxv2(v2-1)+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.1.4
Rewrite the expression.
-dvdx-1+1xv-1(-v2)=x4(v-1)2(-v2)
-dvdx-1+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.2
Multiply -1 by -1.
1dvdx+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.3
Multiply dvdx by 1.
dvdx+1xv-1(-v2)=x4(v-1)2(-v2)
Step 6.1.1.2.1.4
Rewrite using the commutative property of multiplication.
dvdx-1xv-1v2=x4(v-1)2(-v2)
Step 6.1.1.2.1.5
Multiply v-1 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.1.2.1.5.1
Move v2.
dvdx-1x(v2v-1)=x4(v-1)2(-v2)
Step 6.1.1.2.1.5.2
Use the power rule aman=am+n to combine exponents.
dvdx-1xv2-1=x4(v-1)2(-v2)
Step 6.1.1.2.1.5.3
Subtract 1 from 2.
dvdx-1xv1=x4(v-1)2(-v2)
dvdx-1xv1=x4(v-1)2(-v2)
Step 6.1.1.2.1.6
Simplify -1xv1.
dvdx-1xv=x4(v-1)2(-v2)
Step 6.1.1.2.1.7
Combine v and 1x.
dvdx-vx=x4(v-1)2(-v2)
dvdx-vx=x4(v-1)2(-v2)
dvdx-vx=x4(v-1)2(-v2)
Step 6.1.1.3
Simplify the right side.
Tap for more steps...
Step 6.1.1.3.1
Rewrite using the commutative property of multiplication.
dvdx-vx=-x4(v-1)2v2
Step 6.1.1.3.2
Multiply the exponents in (v-1)2.
Tap for more steps...
Step 6.1.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
dvdx-vx=-x4v-12v2
Step 6.1.1.3.2.2
Multiply -1 by 2.
dvdx-vx=-x4v-2v2
dvdx-vx=-x4v-2v2
Step 6.1.1.3.3
Multiply v-2 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.1.3.3.1
Move v2.
dvdx-vx=-x4(v2v-2)
Step 6.1.1.3.3.2
Use the power rule aman=am+n to combine exponents.
dvdx-vx=-x4v2-2
Step 6.1.1.3.3.3
Subtract 2 from 2.
dvdx-vx=-x4v0
dvdx-vx=-x4v0
Step 6.1.1.3.4
Simplify -x4v0.
dvdx-vx=-x4
dvdx-vx=-x4
dvdx-vx=-x4
Step 6.1.2
Factor v out of -vx.
dvdx+v(-1x)=-x4
Step 6.1.3
Reorder v and -1x.
dvdx-1xv=-x4
dvdx-1xv=-x4
Step 6.2
The integrating factor is defined by the formula eP(x)dx, where P(x)=-1x.
Tap for more steps...
Step 6.2.1
Set up the integration.
e-1xdx
Step 6.2.2
Integrate -1x.
Tap for more steps...
Step 6.2.2.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-1xdx
Step 6.2.2.2
The integral of 1x with respect to x is ln(|x|).
e-(ln(|x|)+C)
Step 6.2.2.3
Simplify.
e-ln(|x|)+C
e-ln(|x|)+C
Step 6.2.3
Remove the constant of integration.
e-ln(x)
Step 6.2.4
Use the logarithmic power rule.
eln(x-1)
Step 6.2.5
Exponentiation and log are inverse functions.
x-1
Step 6.2.6
Rewrite the expression using the negative exponent rule b-n=1bn.
1x
1x
Step 6.3
Multiply each term by the integrating factor 1x.
Tap for more steps...
Step 6.3.1
Multiply each term by 1x.
1xdvdx+1x(-1xv)=1x(-x4)
Step 6.3.2
Simplify each term.
Tap for more steps...
Step 6.3.2.1
Combine 1x and dvdx.
dvdxx+1x(-1xv)=1x(-x4)
Step 6.3.2.2
Rewrite using the commutative property of multiplication.
dvdxx-1x(1xv)=1x(-x4)
Step 6.3.2.3
Combine 1x and v.
dvdxx-1xvx=1x(-x4)
Step 6.3.2.4
Multiply -1xvx.
Tap for more steps...
Step 6.3.2.4.1
Multiply vx by 1x.
dvdxx-vxx=1x(-x4)
Step 6.3.2.4.2
Raise x to the power of 1.
dvdxx-vx1x=1x(-x4)
Step 6.3.2.4.3
Raise x to the power of 1.
dvdxx-vx1x1=1x(-x4)
Step 6.3.2.4.4
Use the power rule aman=am+n to combine exponents.
dvdxx-vx1+1=1x(-x4)
Step 6.3.2.4.5
Add 1 and 1.
dvdxx-vx2=1x(-x4)
dvdxx-vx2=1x(-x4)
dvdxx-vx2=1x(-x4)
Step 6.3.3
Rewrite using the commutative property of multiplication.
dvdxx-vx2=-1xx4
Step 6.3.4
Cancel the common factor of x.
Tap for more steps...
Step 6.3.4.1
Move the leading negative in -1x into the numerator.
dvdxx-vx2=-1xx4
Step 6.3.4.2
Factor x out of x4.
dvdxx-vx2=-1x(xx3)
Step 6.3.4.3
Cancel the common factor.
dvdxx-vx2=-1x(xx3)
Step 6.3.4.4
Rewrite the expression.
dvdxx-vx2=-x3
dvdxx-vx2=-x3
dvdxx-vx2=-x3
Step 6.4
Rewrite the left side as a result of differentiating a product.
ddx[1xv]=-x3
Step 6.5
Set up an integral on each side.
ddx[1xv]dx=-x3dx
Step 6.6
Integrate the left side.
1xv=-x3dx
Step 6.7
Integrate the right side.
Tap for more steps...
Step 6.7.1
Since -1 is constant with respect to x, move -1 out of the integral.
1xv=-x3dx
Step 6.7.2
By the Power Rule, the integral of x3 with respect to x is 14x4.
1xv=-(14x4+C)
Step 6.7.3
Rewrite -(14x4+C) as -14x4+C.
1xv=-14x4+C
1xv=-14x4+C
Step 6.8
Solve for v.
Tap for more steps...
Step 6.8.1
Combine 1x and v.
vx=-14x4+C
Step 6.8.2
Combine x4 and 14.
vx=-x44+C
Step 6.8.3
Multiply both sides by x.
vxx=(-x44+C)x
Step 6.8.4
Simplify.
Tap for more steps...
Step 6.8.4.1
Simplify the left side.
Tap for more steps...
Step 6.8.4.1.1
Cancel the common factor of x.
Tap for more steps...
Step 6.8.4.1.1.1
Cancel the common factor.
vxx=(-x44+C)x
Step 6.8.4.1.1.2
Rewrite the expression.
v=(-x44+C)x
v=(-x44+C)x
v=(-x44+C)x
Step 6.8.4.2
Simplify the right side.
Tap for more steps...
Step 6.8.4.2.1
Simplify (-x44+C)x.
Tap for more steps...
Step 6.8.4.2.1.1
Apply the distributive property.
v=-x44x+Cx
Step 6.8.4.2.1.2
Multiply -x44x.
Tap for more steps...
Step 6.8.4.2.1.2.1
Combine x and x44.
v=-xx44+Cx
Step 6.8.4.2.1.2.2
Multiply x by x4 by adding the exponents.
Tap for more steps...
Step 6.8.4.2.1.2.2.1
Multiply x by x4.
Tap for more steps...
Step 6.8.4.2.1.2.2.1.1
Raise x to the power of 1.
v=-x1x44+Cx
Step 6.8.4.2.1.2.2.1.2
Use the power rule aman=am+n to combine exponents.
v=-x1+44+Cx
v=-x1+44+Cx
Step 6.8.4.2.1.2.2.2
Add 1 and 4.
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
v=-x54+Cx
Step 7
Substitute y-1 for v.
y-1=-x54+Cx
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay