Calculus Examples

Solve the Differential Equation
dydx-y=exy2dydxy=exy2
Step 1
To solve the differential equation, let v=y1-nv=y1n where nn is the exponent of y2y2.
v=y-1v=y1
Step 2
Solve the equation for yy.
y=v-1y=v1
Step 3
Take the derivative of yy with respect to xx.
y=v-1
Step 4
Take the derivative of v-1 with respect to x.
Tap for more steps...
Step 4.1
Take the derivative of v-1.
y=ddx[v-1]
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bn.
y=ddx[1v]
Step 4.3
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=1 and g(x)=v.
y=vddx[1]-11ddx[v]v2
Step 4.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.4.1
Multiply -1 by 1.
y=vddx[1]-ddx[v]v2
Step 4.4.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
y=v0-ddx[v]v2
Step 4.4.3
Simplify the expression.
Tap for more steps...
Step 4.4.3.1
Multiply v by 0.
y=0-ddx[v]v2
Step 4.4.3.2
Subtract ddx[v] from 0.
y=-ddx[v]v2
Step 4.4.3.3
Move the negative in front of the fraction.
y=-ddx[v]v2
y=-ddx[v]v2
y=-ddx[v]v2
Step 4.5
Rewrite ddx[v] as v.
y=-vv2
y=-vv2
Step 5
Substitute -vv2 for dydx and v-1 for y in the original equation dydx-y=exy2.
-vv2-v-1=ex(v-1)2
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Multiply each term in -dvdxv2-v-1=ex(v-1)2 by -v2 to eliminate the fractions.
Tap for more steps...
Step 6.1.1
Multiply each term in -dvdxv2-v-1=ex(v-1)2 by -v2.
-dvdxv2(-v2)-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2
Simplify the left side.
Tap for more steps...
Step 6.1.2.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1
Cancel the common factor of v2.
Tap for more steps...
Step 6.1.2.1.1.1
Move the leading negative in -dvdxv2 into the numerator.
-dvdxv2(-v2)-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.1.2
Factor v2 out of -v2.
-dvdxv2(v2-1)-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.1.3
Cancel the common factor.
-dvdxv2(v2-1)-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.1.4
Rewrite the expression.
-dvdx-1-v-1(-v2)=ex(v-1)2(-v2)
-dvdx-1-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.2
Multiply -1 by -1.
1dvdx-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.3
Multiply dvdx by 1.
dvdx-v-1(-v2)=ex(v-1)2(-v2)
Step 6.1.2.1.4
Rewrite using the commutative property of multiplication.
dvdx-1-1v-1v2=ex(v-1)2(-v2)
Step 6.1.2.1.5
Multiply v-1 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.2.1.5.1
Move v2.
dvdx-1-1(v2v-1)=ex(v-1)2(-v2)
Step 6.1.2.1.5.2
Use the power rule aman=am+n to combine exponents.
dvdx-1-1v2-1=ex(v-1)2(-v2)
Step 6.1.2.1.5.3
Subtract 1 from 2.
dvdx-1-1v1=ex(v-1)2(-v2)
dvdx-1-1v1=ex(v-1)2(-v2)
Step 6.1.2.1.6
Simplify -1-1v1.
dvdx-1-1v=ex(v-1)2(-v2)
Step 6.1.2.1.7
Multiply -1 by -1.
dvdx+1v=ex(v-1)2(-v2)
Step 6.1.2.1.8
Multiply v by 1.
dvdx+v=ex(v-1)2(-v2)
dvdx+v=ex(v-1)2(-v2)
dvdx+v=ex(v-1)2(-v2)
Step 6.1.3
Simplify the right side.
Tap for more steps...
Step 6.1.3.1
Rewrite using the commutative property of multiplication.
dvdx+v=-ex(v-1)2v2
Step 6.1.3.2
Multiply the exponents in (v-1)2.
Tap for more steps...
Step 6.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
dvdx+v=-exv-12v2
Step 6.1.3.2.2
Multiply -1 by 2.
dvdx+v=-exv-2v2
dvdx+v=-exv-2v2
Step 6.1.3.3
Multiply v-2 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.3.3.1
Move v2.
dvdx+v=-ex(v2v-2)
Step 6.1.3.3.2
Use the power rule aman=am+n to combine exponents.
dvdx+v=-exv2-2
Step 6.1.3.3.3
Subtract 2 from 2.
dvdx+v=-exv0
dvdx+v=-exv0
Step 6.1.3.4
Simplify -exv0.
dvdx+v=-ex
dvdx+v=-ex
dvdx+v=-ex
Step 6.2
The integrating factor is defined by the formula eP(x)dx, where P(x)=1.
Tap for more steps...
Step 6.2.1
Set up the integration.
edx
Step 6.2.2
Apply the constant rule.
ex+C
Step 6.2.3
Remove the constant of integration.
ex
ex
Step 6.3
Multiply each term by the integrating factor ex.
Tap for more steps...
Step 6.3.1
Multiply each term by ex.
exdvdx+exv=ex(-ex)
Step 6.3.2
Rewrite using the commutative property of multiplication.
exdvdx+exv=-exex
Step 6.3.3
Multiply ex by ex by adding the exponents.
Tap for more steps...
Step 6.3.3.1
Move ex.
exdvdx+exv=-(exex)
Step 6.3.3.2
Use the power rule aman=am+n to combine exponents.
exdvdx+exv=-ex+x
Step 6.3.3.3
Add x and x.
exdvdx+exv=-e2x
exdvdx+exv=-e2x
Step 6.3.4
Reorder factors in exdvdx+exv=-e2x.
exdvdx+vex=-e2x
exdvdx+vex=-e2x
Step 6.4
Rewrite the left side as a result of differentiating a product.
ddx[exv]=-e2x
Step 6.5
Set up an integral on each side.
ddx[exv]dx=-e2xdx
Step 6.6
Integrate the left side.
exv=-e2xdx
Step 6.7
Integrate the right side.
Tap for more steps...
Step 6.7.1
Since -1 is constant with respect to x, move -1 out of the integral.
exv=-e2xdx
Step 6.7.2
Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.
Tap for more steps...
Step 6.7.2.1
Let u=2x. Find dudx.
Tap for more steps...
Step 6.7.2.1.1
Differentiate 2x.
ddx[2x]
Step 6.7.2.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 6.7.2.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
21
Step 6.7.2.1.4
Multiply 2 by 1.
2
2
Step 6.7.2.2
Rewrite the problem using u and du.
exv=-eu12du
exv=-eu12du
Step 6.7.3
Combine eu and 12.
exv=-eu2du
Step 6.7.4
Since 12 is constant with respect to u, move 12 out of the integral.
exv=-(12eudu)
Step 6.7.5
The integral of eu with respect to u is eu.
exv=-12(eu+C)
Step 6.7.6
Simplify.
exv=-12eu+C
Step 6.7.7
Replace all occurrences of u with 2x.
exv=-12e2x+C
exv=-12e2x+C
Step 6.8
Divide each term in exv=-12e2x+C by ex and simplify.
Tap for more steps...
Step 6.8.1
Divide each term in exv=-12e2x+C by ex.
exvex=-12e2xex+Cex
Step 6.8.2
Simplify the left side.
Tap for more steps...
Step 6.8.2.1
Cancel the common factor of ex.
Tap for more steps...
Step 6.8.2.1.1
Cancel the common factor.
exvex=-12e2xex+Cex
Step 6.8.2.1.2
Divide v by 1.
v=-12e2xex+Cex
v=-12e2xex+Cex
v=-12e2xex+Cex
Step 6.8.3
Simplify the right side.
Tap for more steps...
Step 6.8.3.1
Simplify each term.
Tap for more steps...
Step 6.8.3.1.1
Cancel the common factor of e2x and ex.
Tap for more steps...
Step 6.8.3.1.1.1
Factor ex out of -12e2x.
v=ex(-12ex)ex+Cex
Step 6.8.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 6.8.3.1.1.2.1
Multiply by 1.
v=ex(-12ex)ex1+Cex
Step 6.8.3.1.1.2.2
Cancel the common factor.
v=ex(-12ex)ex1+Cex
Step 6.8.3.1.1.2.3
Rewrite the expression.
v=-12ex1+Cex
Step 6.8.3.1.1.2.4
Divide -12ex by 1.
v=-12ex+Cex
v=-12ex+Cex
v=-12ex+Cex
Step 6.8.3.1.2
Combine ex and 12.
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
Step 7
Substitute y-1 for v.
y-1=-ex2+Cex
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay