Calculus Examples
f(x)=-6xf(x)=−6x
Step 1
Consider the limit definition of the derivative.
f′(x)=limh→0f(x+h)-f(x)h
Step 2
Step 2.1
Evaluate the function at x=x+h.
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=-6(x+h)
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Apply the distributive property.
f(x+h)=-6x-6h
Step 2.1.2.2
The final answer is -6x-6h.
-6x-6h
-6x-6h
-6x-6h
Step 2.2
Find the components of the definition.
f(x+h)=-6x-6h
f(x)=-6x
f(x+h)=-6x-6h
f(x)=-6x
Step 3
Plug in the components.
f′(x)=limh→0-6x-6h-(-6x)h
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Multiply -6 by -1.
f′(x)=limh→0-6x-6h+6xh
Step 4.1.2
Add -6x and 6x.
f′(x)=limh→0-6h+0h
Step 4.1.3
Add -6h and 0.
f′(x)=limh→0-6hh
f′(x)=limh→0-6hh
Step 4.2
Cancel the common factor of h.
Step 4.2.1
Cancel the common factor.
f′(x)=limh→0-6hh
Step 4.2.2
Divide -6 by 1.
f′(x)=limh→0-6
f′(x)=limh→0-6
f′(x)=limh→0-6
Step 5
Evaluate the limit of -6 which is constant as h approaches 0.
-6
Step 6