Calculus Examples

Use the Limit Definition to Find the Derivative
f(x)=2x+2
Step 1
Consider the limit definition of the derivative.
f(x)=limh0f(x+h)-f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=2(x+h)+2
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Apply the distributive property.
f(x+h)=2x+2h+2
Step 2.1.2.2
The final answer is 2x+2h+2.
2x+2h+2
2x+2h+2
2x+2h+2
Step 2.2
Reorder 2x and 2h.
2h+2x+2
Step 2.3
Find the components of the definition.
f(x+h)=2h+2x+2
f(x)=2x+2
f(x+h)=2h+2x+2
f(x)=2x+2
Step 3
Plug in the components.
f(x)=limh02h+2x+2-(2x+2)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Factor 2 out of 2x+2.
Tap for more steps...
Step 4.1.1.1
Factor 2 out of 2x.
f(x)=limh02h+2x+2-(2(x)+2)h
Step 4.1.1.2
Factor 2 out of 2.
f(x)=limh02h+2x+2-(2(x)+2(1))h
Step 4.1.1.3
Factor 2 out of 2(x)+2(1).
f(x)=limh02h+2x+2-(2(x+1))h
f(x)=limh02h+2x+2-1(2(x+1))h
Step 4.1.2
Multiply -1 by 2.
f(x)=limh02h+2x+2-2(x+1)h
Step 4.1.3
Factor 2 out of 2h+2x+2-2(x+1).
Tap for more steps...
Step 4.1.3.1
Factor 2 out of 2h.
f(x)=limh02h+2x+2-2(x+1)h
Step 4.1.3.2
Factor 2 out of 2x.
f(x)=limh02h+2(x)+2-2(x+1)h
Step 4.1.3.3
Factor 2 out of 2.
f(x)=limh02h+2(x)+2(1)-2(x+1)h
Step 4.1.3.4
Factor 2 out of -2(x+1).
f(x)=limh02h+2(x)+2(1)+2(-(x+1))h
Step 4.1.3.5
Factor 2 out of 2h+2(x).
f(x)=limh02(h+x)+2(1)+2(-(x+1))h
Step 4.1.3.6
Factor 2 out of 2(h+x)+2(1).
f(x)=limh02(h+x+1)+2(-(x+1))h
Step 4.1.3.7
Factor 2 out of 2(h+x+1)+2(-(x+1)).
f(x)=limh02(h+x+1-(x+1))h
f(x)=limh02(h+x+1-(x+1))h
Step 4.1.4
Apply the distributive property.
f(x)=limh02(h+x+1-x-11)h
Step 4.1.5
Multiply -1 by 1.
f(x)=limh02(h+x+1-x-1)h
Step 4.1.6
Subtract x from x.
f(x)=limh02(h+0+1-1)h
Step 4.1.7
Add h and 0.
f(x)=limh02(h+1-1)h
Step 4.1.8
Subtract 1 from 1.
f(x)=limh02(h+0)h
Step 4.1.9
Add h and 0.
f(x)=limh02hh
f(x)=limh02hh
Step 4.2
Cancel the common factor of h.
Tap for more steps...
Step 4.2.1
Cancel the common factor.
f(x)=limh02hh
Step 4.2.2
Divide 2 by 1.
f(x)=limh02
f(x)=limh02
f(x)=limh02
Step 5
Evaluate the limit of 2 which is constant as h approaches 0.
2
Step 6
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay