Calculus Examples

Use Logarithmic Differentiation to Find the Derivative
y=xln(x)y=xln(x)
Step 1
Let y=f(x)y=f(x), take the natural logarithm of both sides ln(y)=ln(f(x))ln(y)=ln(f(x)).
ln(y)=ln(xln(x))ln(y)=ln(xln(x))
Step 2
Expand the right hand side.
Tap for more steps...
Step 2.1
Expand ln(xln(x))ln(xln(x)) by moving ln(x)ln(x) outside the logarithm.
ln(y)=ln(x)ln(x)ln(y)=ln(x)ln(x)
Step 2.2
Raise ln(x)ln(x) to the power of 11.
ln(y)=ln1(x)ln(x)ln(y)=ln1(x)ln(x)
Step 2.3
Raise ln(x)ln(x) to the power of 11.
ln(y)=ln1(x)ln1(x)ln(y)=ln1(x)ln1(x)
Step 2.4
Use the power rule aman=am+naman=am+n to combine exponents.
ln(y)=ln(x)1+1ln(y)=ln(x)1+1
Step 2.5
Add 11 and 11.
ln(y)=ln2(x)ln(y)=ln2(x)
ln(y)=ln2(x)ln(y)=ln2(x)
Step 3
Differentiate the expression using the chain rule, keeping in mind that yy is a function of xx.
Tap for more steps...
Step 3.1
Differentiate the left hand side ln(y)ln(y) using the chain rule.
yy=ln2(x)
Step 3.2
Differentiate the right hand side.
Tap for more steps...
Step 3.2.1
Differentiate ln2(x).
yy=ddx[ln2(x)]
Step 3.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=ln(x).
Tap for more steps...
Step 3.2.2.1
To apply the Chain Rule, set u as ln(x).
yy=ddu[u2]ddx[ln(x)]
Step 3.2.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
yy=2uddx[ln(x)]
Step 3.2.2.3
Replace all occurrences of u with ln(x).
yy=2ln(x)ddx[ln(x)]
yy=2ln(x)ddx[ln(x)]
Step 3.2.3
The derivative of ln(x) with respect to x is 1x.
yy=2ln(x)1x
Step 3.2.4
Combine fractions.
Tap for more steps...
Step 3.2.4.1
Combine 1x and 2.
yy=2xln(x)
Step 3.2.4.2
Combine 2x and ln(x).
yy=2ln(x)x
yy=2ln(x)x
Step 3.2.5
Simplify 2ln(x) by moving 2 inside the logarithm.
yy=ln(x2)x
yy=ln(x2)x
yy=ln(x2)x
Step 4
Isolate y and substitute the original function for y in the right hand side.
y=ln(x2)xxln(x)
Step 5
Simplify the right hand side.
Tap for more steps...
Step 5.1
Combine ln(x2)x and xln(x).
y=ln(x2)xln(x)x
Step 5.2
Cancel the common factor of xln(x) and x.
Tap for more steps...
Step 5.2.1
Factor x out of ln(x2)xln(x).
y=x(ln(x2)xln(x)-1)x
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Raise x to the power of 1.
y=x(ln(x2)xln(x)-1)x1
Step 5.2.2.2
Factor x out of x1.
y=x(ln(x2)xln(x)-1)x1
Step 5.2.2.3
Cancel the common factor.
y=x(ln(x2)xln(x)-1)x1
Step 5.2.2.4
Rewrite the expression.
y=ln(x2)xln(x)-11
Step 5.2.2.5
Divide ln(x2)xln(x)-1 by 1.
y=ln(x2)xln(x)-1
y=ln(x2)xln(x)-1
y=ln(x2)xln(x)-1
Step 5.3
Reorder factors in ln(x2)xln(x)-1.
y=xln(x)-1ln(x2)
y=xln(x)-1ln(x2)
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay