Calculus Examples
y=x2y3+x3y2y=x2y3+x3y2
Step 1
Differentiate both sides of the equation.
ddx(y)=ddx(x2y3+x3y2)ddx(y)=ddx(x2y3+x3y2)
Step 2
The derivative of yy with respect to xx is y′.
y′
Step 3
Step 3.1
By the Sum Rule, the derivative of x2y3+x3y2 with respect to x is ddx[x2y3]+ddx[x3y2].
ddx[x2y3]+ddx[x3y2]
Step 3.2
Evaluate ddx[x2y3].
Step 3.2.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y3.
x2ddx[y3]+y3ddx[x2]+ddx[x3y2]
Step 3.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x3 and g(x)=y.
Step 3.2.2.1
To apply the Chain Rule, set u1 as y.
x2(ddu1[u13]ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=3.
x2(3u12ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.2.3
Replace all occurrences of u1 with y.
x2(3y2ddx[y])+y3ddx[x2]+ddx[x3y2]
x2(3y2ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.3
Rewrite ddx[y] as y′.
x2(3y2y′)+y3ddx[x2]+ddx[x3y2]
Step 3.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(3y2y′)+y3(2x)+ddx[x3y2]
Step 3.2.5
Move 3 to the left of x2.
3⋅x2y2y′+y3(2x)+ddx[x3y2]
Step 3.2.6
Move 2 to the left of y3.
3x2y2y′+2y3x+ddx[x3y2]
3x2y2y′+2y3x+ddx[x3y2]
Step 3.3
Evaluate ddx[x3y2].
Step 3.3.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x3 and g(x)=y2.
3x2y2y′+2y3x+x3ddx[y2]+y2ddx[x3]
Step 3.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 3.3.2.1
To apply the Chain Rule, set u2 as y.
3x2y2y′+2y3x+x3(ddu2[u22]ddx[y])+y2ddx[x3]
Step 3.3.2.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
3x2y2y′+2y3x+x3(2u2ddx[y])+y2ddx[x3]
Step 3.3.2.3
Replace all occurrences of u2 with y.
3x2y2y′+2y3x+x3(2yddx[y])+y2ddx[x3]
3x2y2y′+2y3x+x3(2yddx[y])+y2ddx[x3]
Step 3.3.3
Rewrite ddx[y] as y′.
3x2y2y′+2y3x+x3(2yy′)+y2ddx[x3]
Step 3.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2y2y′+2y3x+x3(2yy′)+y2(3x2)
Step 3.3.5
Move 2 to the left of x3.
3x2y2y′+2y3x+2⋅x3yy′+y2(3x2)
Step 3.3.6
Move 3 to the left of y2.
3x2y2y′+2y3x+2x3yy′+3y2x2
3x2y2y′+2y3x+2x3yy′+3y2x2
Step 3.4
Reorder terms.
3x2y2y′+2y3x+2x3yy′+3x2y2
3x2y2y′+2y3x+2x3yy′+3x2y2
Step 4
Reform the equation by setting the left side equal to the right side.
y′=3x2y2y′+2y3x+2x3yy′+3x2y2
Step 5
Step 5.1
Since y′ is on the right side of the equation, switch the sides so it is on the left side of the equation.
3x2y2y′+2y3x+2x3yy′+3x2y2=y′
Step 5.2
Subtract y′ from both sides of the equation.
3x2y2y′+2y3x+2x3yy′+3x2y2-y′=0
Step 5.3
Move all terms not containing y′ to the right side of the equation.
Step 5.3.1
Subtract 2y3x from both sides of the equation.
3x2y2y′+2x3yy′+3x2y2-y′=-2y3x
Step 5.3.2
Subtract 3x2y2 from both sides of the equation.
3x2y2y′+2x3yy′-y′=-2y3x-3x2y2
3x2y2y′+2x3yy′-y′=-2y3x-3x2y2
Step 5.4
Factor y′ out of 3x2y2y′+2x3yy′-y′.
Step 5.4.1
Factor y′ out of 3x2y2y′.
y′(3x2y2)+2x3yy′-y′=-2y3x-3x2y2
Step 5.4.2
Factor y′ out of 2x3yy′.
y′(3x2y2)+y′(2x3y)-y′=-2y3x-3x2y2
Step 5.4.3
Factor y′ out of -y′.
y′(3x2y2)+y′(2x3y)+y′⋅-1=-2y3x-3x2y2
Step 5.4.4
Factor y′ out of y′(3x2y2)+y′(2x3y).
y′(3x2y2+2x3y)+y′⋅-1=-2y3x-3x2y2
Step 5.4.5
Factor y′ out of y′(3x2y2+2x3y)+y′⋅-1.
y′(3x2y2+2x3y-1)=-2y3x-3x2y2
y′(3x2y2+2x3y-1)=-2y3x-3x2y2
Step 5.5
Divide each term in y′(3x2y2+2x3y-1)=-2y3x-3x2y2 by 3x2y2+2x3y-1 and simplify.
Step 5.5.1
Divide each term in y′(3x2y2+2x3y-1)=-2y3x-3x2y2 by 3x2y2+2x3y-1.
y′(3x2y2+2x3y-1)3x2y2+2x3y-1=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.2
Simplify the left side.
Step 5.5.2.1
Cancel the common factor of 3x2y2+2x3y-1.
Step 5.5.2.1.1
Cancel the common factor.
y′(3x2y2+2x3y-1)3x2y2+2x3y-1=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.2.1.2
Divide y′ by 1.
y′=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
y′=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
y′=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.3
Simplify the right side.
Step 5.5.3.1
Combine the numerators over the common denominator.
y′=-2y3x-3x2y23x2y2+2x3y-1
Step 5.5.3.2
Factor y2x out of -2y3x-3x2y2.
Step 5.5.3.2.1
Factor y2x out of -2y3x.
y′=y2x(-2y)-3x2y23x2y2+2x3y-1
Step 5.5.3.2.2
Factor y2x out of -3x2y2.
y′=y2x(-2y)+y2x(-3x)3x2y2+2x3y-1
Step 5.5.3.2.3
Factor y2x out of y2x(-2y)+y2x(-3x).
y′=y2x(-2y-3x)3x2y2+2x3y-1
y′=y2x(-2y-3x)3x2y2+2x3y-1
Step 5.5.3.3
Factor -1 out of -2y.
y′=y2x(-(2y)-3x)3x2y2+2x3y-1
Step 5.5.3.4
Factor -1 out of -3x.
y′=y2x(-(2y)-(3x))3x2y2+2x3y-1
Step 5.5.3.5
Factor -1 out of -(2y)-(3x).
y′=y2x(-(2y+3x))3x2y2+2x3y-1
Step 5.5.3.6
Simplify the expression.
Step 5.5.3.6.1
Rewrite -(2y+3x) as -1(2y+3x).
y′=y2x(-1(2y+3x))3x2y2+2x3y-1
Step 5.5.3.6.2
Move the negative in front of the fraction.
y′=-(y2x)(2y+3x)3x2y2+2x3y-1
Step 5.5.3.6.3
Reorder factors in -(y2x)(2y+3x)3x2y2+2x3y-1.
y′=-y2x(2y+3x)3x2y2+2x3y-1
y′=-y2x(2y+3x)3x2y2+2x3y-1
y′=-y2x(2y+3x)3x2y2+2x3y-1
y′=-y2x(2y+3x)3x2y2+2x3y-1
y′=-y2x(2y+3x)3x2y2+2x3y-1
Step 6
Replace y′ with dydx.
dydx=-y2x(2y+3x)3x2y2+2x3y-1