Calculus Examples

y=x2y3+x3y2y=x2y3+x3y2
Step 1
Differentiate both sides of the equation.
ddx(y)=ddx(x2y3+x3y2)ddx(y)=ddx(x2y3+x3y2)
Step 2
The derivative of yy with respect to xx is y.
y
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of x2y3+x3y2 with respect to x is ddx[x2y3]+ddx[x3y2].
ddx[x2y3]+ddx[x3y2]
Step 3.2
Evaluate ddx[x2y3].
Tap for more steps...
Step 3.2.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y3.
x2ddx[y3]+y3ddx[x2]+ddx[x3y2]
Step 3.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3 and g(x)=y.
Tap for more steps...
Step 3.2.2.1
To apply the Chain Rule, set u1 as y.
x2(ddu1[u13]ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=3.
x2(3u12ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.2.3
Replace all occurrences of u1 with y.
x2(3y2ddx[y])+y3ddx[x2]+ddx[x3y2]
x2(3y2ddx[y])+y3ddx[x2]+ddx[x3y2]
Step 3.2.3
Rewrite ddx[y] as y.
x2(3y2y)+y3ddx[x2]+ddx[x3y2]
Step 3.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(3y2y)+y3(2x)+ddx[x3y2]
Step 3.2.5
Move 3 to the left of x2.
3x2y2y+y3(2x)+ddx[x3y2]
Step 3.2.6
Move 2 to the left of y3.
3x2y2y+2y3x+ddx[x3y2]
3x2y2y+2y3x+ddx[x3y2]
Step 3.3
Evaluate ddx[x3y2].
Tap for more steps...
Step 3.3.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x3 and g(x)=y2.
3x2y2y+2y3x+x3ddx[y2]+y2ddx[x3]
Step 3.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 3.3.2.1
To apply the Chain Rule, set u2 as y.
3x2y2y+2y3x+x3(ddu2[u22]ddx[y])+y2ddx[x3]
Step 3.3.2.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
3x2y2y+2y3x+x3(2u2ddx[y])+y2ddx[x3]
Step 3.3.2.3
Replace all occurrences of u2 with y.
3x2y2y+2y3x+x3(2yddx[y])+y2ddx[x3]
3x2y2y+2y3x+x3(2yddx[y])+y2ddx[x3]
Step 3.3.3
Rewrite ddx[y] as y.
3x2y2y+2y3x+x3(2yy)+y2ddx[x3]
Step 3.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2y2y+2y3x+x3(2yy)+y2(3x2)
Step 3.3.5
Move 2 to the left of x3.
3x2y2y+2y3x+2x3yy+y2(3x2)
Step 3.3.6
Move 3 to the left of y2.
3x2y2y+2y3x+2x3yy+3y2x2
3x2y2y+2y3x+2x3yy+3y2x2
Step 3.4
Reorder terms.
3x2y2y+2y3x+2x3yy+3x2y2
3x2y2y+2y3x+2x3yy+3x2y2
Step 4
Reform the equation by setting the left side equal to the right side.
y=3x2y2y+2y3x+2x3yy+3x2y2
Step 5
Solve for y.
Tap for more steps...
Step 5.1
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
3x2y2y+2y3x+2x3yy+3x2y2=y
Step 5.2
Subtract y from both sides of the equation.
3x2y2y+2y3x+2x3yy+3x2y2-y=0
Step 5.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 5.3.1
Subtract 2y3x from both sides of the equation.
3x2y2y+2x3yy+3x2y2-y=-2y3x
Step 5.3.2
Subtract 3x2y2 from both sides of the equation.
3x2y2y+2x3yy-y=-2y3x-3x2y2
3x2y2y+2x3yy-y=-2y3x-3x2y2
Step 5.4
Factor y out of 3x2y2y+2x3yy-y.
Tap for more steps...
Step 5.4.1
Factor y out of 3x2y2y.
y(3x2y2)+2x3yy-y=-2y3x-3x2y2
Step 5.4.2
Factor y out of 2x3yy.
y(3x2y2)+y(2x3y)-y=-2y3x-3x2y2
Step 5.4.3
Factor y out of -y.
y(3x2y2)+y(2x3y)+y-1=-2y3x-3x2y2
Step 5.4.4
Factor y out of y(3x2y2)+y(2x3y).
y(3x2y2+2x3y)+y-1=-2y3x-3x2y2
Step 5.4.5
Factor y out of y(3x2y2+2x3y)+y-1.
y(3x2y2+2x3y-1)=-2y3x-3x2y2
y(3x2y2+2x3y-1)=-2y3x-3x2y2
Step 5.5
Divide each term in y(3x2y2+2x3y-1)=-2y3x-3x2y2 by 3x2y2+2x3y-1 and simplify.
Tap for more steps...
Step 5.5.1
Divide each term in y(3x2y2+2x3y-1)=-2y3x-3x2y2 by 3x2y2+2x3y-1.
y(3x2y2+2x3y-1)3x2y2+2x3y-1=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.2
Simplify the left side.
Tap for more steps...
Step 5.5.2.1
Cancel the common factor of 3x2y2+2x3y-1.
Tap for more steps...
Step 5.5.2.1.1
Cancel the common factor.
y(3x2y2+2x3y-1)3x2y2+2x3y-1=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.2.1.2
Divide y by 1.
y=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
y=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
y=-2y3x3x2y2+2x3y-1+-3x2y23x2y2+2x3y-1
Step 5.5.3
Simplify the right side.
Tap for more steps...
Step 5.5.3.1
Combine the numerators over the common denominator.
y=-2y3x-3x2y23x2y2+2x3y-1
Step 5.5.3.2
Factor y2x out of -2y3x-3x2y2.
Tap for more steps...
Step 5.5.3.2.1
Factor y2x out of -2y3x.
y=y2x(-2y)-3x2y23x2y2+2x3y-1
Step 5.5.3.2.2
Factor y2x out of -3x2y2.
y=y2x(-2y)+y2x(-3x)3x2y2+2x3y-1
Step 5.5.3.2.3
Factor y2x out of y2x(-2y)+y2x(-3x).
y=y2x(-2y-3x)3x2y2+2x3y-1
y=y2x(-2y-3x)3x2y2+2x3y-1
Step 5.5.3.3
Factor -1 out of -2y.
y=y2x(-(2y)-3x)3x2y2+2x3y-1
Step 5.5.3.4
Factor -1 out of -3x.
y=y2x(-(2y)-(3x))3x2y2+2x3y-1
Step 5.5.3.5
Factor -1 out of -(2y)-(3x).
y=y2x(-(2y+3x))3x2y2+2x3y-1
Step 5.5.3.6
Simplify the expression.
Tap for more steps...
Step 5.5.3.6.1
Rewrite -(2y+3x) as -1(2y+3x).
y=y2x(-1(2y+3x))3x2y2+2x3y-1
Step 5.5.3.6.2
Move the negative in front of the fraction.
y=-(y2x)(2y+3x)3x2y2+2x3y-1
Step 5.5.3.6.3
Reorder factors in -(y2x)(2y+3x)3x2y2+2x3y-1.
y=-y2x(2y+3x)3x2y2+2x3y-1
y=-y2x(2y+3x)3x2y2+2x3y-1
y=-y2x(2y+3x)3x2y2+2x3y-1
y=-y2x(2y+3x)3x2y2+2x3y-1
y=-y2x(2y+3x)3x2y2+2x3y-1
Step 6
Replace y with dydx.
dydx=-y2x(2y+3x)3x2y2+2x3y-1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay