Calculus Examples
y=6x-4cos(3x)y=6x−4cos(3x)
Step 1
Differentiate both sides of the equation.
ddx(y)=ddx(6x-4cos(3x))ddx(y)=ddx(6x−4cos(3x))
Step 2
The derivative of yy with respect to xx is y′.
y′
Step 3
Step 3.1
By the Sum Rule, the derivative of 6x-4cos(3x) with respect to x is ddx[6x]+ddx[-4cos(3x)].
ddx[6x]+ddx[-4cos(3x)]
Step 3.2
Evaluate ddx[6x].
Step 3.2.1
Since 6 is constant with respect to x, the derivative of 6x with respect to x is 6ddx[x].
6ddx[x]+ddx[-4cos(3x)]
Step 3.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
6⋅1+ddx[-4cos(3x)]
Step 3.2.3
Multiply 6 by 1.
6+ddx[-4cos(3x)]
6+ddx[-4cos(3x)]
Step 3.3
Evaluate ddx[-4cos(3x)].
Step 3.3.1
Since -4 is constant with respect to x, the derivative of -4cos(3x) with respect to x is -4ddx[cos(3x)].
6-4ddx[cos(3x)]
Step 3.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=cos(x) and g(x)=3x.
Step 3.3.2.1
To apply the Chain Rule, set u as 3x.
6-4(ddu[cos(u)]ddx[3x])
Step 3.3.2.2
The derivative of cos(u) with respect to u is -sin(u).
6-4(-sin(u)ddx[3x])
Step 3.3.2.3
Replace all occurrences of u with 3x.
6-4(-sin(3x)ddx[3x])
6-4(-sin(3x)ddx[3x])
Step 3.3.3
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
6-4(-sin(3x)(3ddx[x]))
Step 3.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
6-4(-sin(3x)(3⋅1))
Step 3.3.5
Multiply 3 by 1.
6-4(-sin(3x)⋅3)
Step 3.3.6
Multiply 3 by -1.
6-4(-3sin(3x))
Step 3.3.7
Multiply -3 by -4.
6+12sin(3x)
6+12sin(3x)
6+12sin(3x)
Step 4
Reform the equation by setting the left side equal to the right side.
y′=6+12sin(3x)
Step 5
Replace y′ with dydx.
dydx=6+12sin(3x)
Step 6
Step 6.1
Subtract 6 from both sides of the equation.
12sin(3x)=-6
Step 6.2
Divide each term in 12sin(3x)=-6 by 12 and simplify.
Step 6.2.1
Divide each term in 12sin(3x)=-6 by 12.
12sin(3x)12=-612
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Cancel the common factor of 12.
Step 6.2.2.1.1
Cancel the common factor.
12sin(3x)12=-612
Step 6.2.2.1.2
Divide sin(3x) by 1.
sin(3x)=-612
sin(3x)=-612
sin(3x)=-612
Step 6.2.3
Simplify the right side.
Step 6.2.3.1
Cancel the common factor of -6 and 12.
Step 6.2.3.1.1
Factor 6 out of -6.
sin(3x)=6(-1)12
Step 6.2.3.1.2
Cancel the common factors.
Step 6.2.3.1.2.1
Factor 6 out of 12.
sin(3x)=6⋅-16⋅2
Step 6.2.3.1.2.2
Cancel the common factor.
sin(3x)=6⋅-16⋅2
Step 6.2.3.1.2.3
Rewrite the expression.
sin(3x)=-12
sin(3x)=-12
sin(3x)=-12
Step 6.2.3.2
Move the negative in front of the fraction.
sin(3x)=-12
sin(3x)=-12
sin(3x)=-12
Step 6.3
Take the inverse sine of both sides of the equation to extract x from inside the sine.
3x=arcsin(-12)
Step 6.4
Simplify the right side.
Step 6.4.1
The exact value of arcsin(-12) is -π6.
3x=-π6
3x=-π6
Step 6.5
Divide each term in 3x=-π6 by 3 and simplify.
Step 6.5.1
Divide each term in 3x=-π6 by 3.
3x3=-π63
Step 6.5.2
Simplify the left side.
Step 6.5.2.1
Cancel the common factor of 3.
Step 6.5.2.1.1
Cancel the common factor.
3x3=-π63
Step 6.5.2.1.2
Divide x by 1.
x=-π63
x=-π63
x=-π63
Step 6.5.3
Simplify the right side.
Step 6.5.3.1
Multiply the numerator by the reciprocal of the denominator.
x=-π6⋅13
Step 6.5.3.2
Multiply -π6⋅13.
Step 6.5.3.2.1
Multiply 13 by π6.
x=-π3⋅6
Step 6.5.3.2.2
Multiply 3 by 6.
x=-π18
x=-π18
x=-π18
x=-π18
Step 6.6
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from 2π, to find a reference angle. Next, add this reference angle to π to find the solution in the third quadrant.
3x=2π+π6+π
Step 6.7
Simplify the expression to find the second solution.
Step 6.7.1
Subtract 2π from 2π+π6+π.
3x=2π+π6+π-2π
Step 6.7.2
The resulting angle of 7π6 is positive, less than 2π, and coterminal with 2π+π6+π.
3x=7π6
Step 6.7.3
Divide each term in 3x=7π6 by 3 and simplify.
Step 6.7.3.1
Divide each term in 3x=7π6 by 3.
3x3=7π63
Step 6.7.3.2
Simplify the left side.
Step 6.7.3.2.1
Cancel the common factor of 3.
Step 6.7.3.2.1.1
Cancel the common factor.
3x3=7π63
Step 6.7.3.2.1.2
Divide x by 1.
x=7π63
x=7π63
x=7π63
Step 6.7.3.3
Simplify the right side.
Step 6.7.3.3.1
Multiply the numerator by the reciprocal of the denominator.
x=7π6⋅13
Step 6.7.3.3.2
Multiply 7π6⋅13.
Step 6.7.3.3.2.1
Multiply 7π6 by 13.
x=7π6⋅3
Step 6.7.3.3.2.2
Multiply 6 by 3.
x=7π18
x=7π18
x=7π18
x=7π18
x=7π18
Step 6.8
Find the period of sin(3x).
Step 6.8.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 6.8.2
Replace b with 3 in the formula for period.
2π|3|
Step 6.8.3
The absolute value is the distance between a number and zero. The distance between 0 and 3 is 3.
2π3
2π3
Step 6.9
Add 2π3 to every negative angle to get positive angles.
Step 6.9.1
Add 2π3 to -π18 to find the positive angle.
-π18+2π3
Step 6.9.2
To write 2π3 as a fraction with a common denominator, multiply by 66.
2π3⋅66-π18
Step 6.9.3
Write each expression with a common denominator of 18, by multiplying each by an appropriate factor of 1.
Step 6.9.3.1
Multiply 2π3 by 66.
2π⋅63⋅6-π18
Step 6.9.3.2
Multiply 3 by 6.
2π⋅618-π18
2π⋅618-π18
Step 6.9.4
Combine the numerators over the common denominator.
2π⋅6-π18
Step 6.9.5
Simplify the numerator.
Step 6.9.5.1
Multiply 6 by 2.
12π-π18
Step 6.9.5.2
Subtract π from 12π.
11π18
11π18
Step 6.9.6
List the new angles.
x=11π18
x=11π18
Step 6.10
The period of the sin(3x) function is 2π3 so values will repeat every 2π3 radians in both directions.
x=7π18+2πn3,11π18+2πn3, for any integer n
x=7π18+2πn3,11π18+2πn3, for any integer n
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Apply the distributive property.
y=67π18+62πn3-4cos(3(7π18+2πn3))
Step 7.1.2
Cancel the common factor of 6.
Step 7.1.2.1
Factor 6 out of 18.
y=67π6(3)+62πn3-4cos(3(7π18+2πn3))
Step 7.1.2.2
Cancel the common factor.
y=67π6⋅3+62πn3-4cos(3(7π18+2πn3))
Step 7.1.2.3
Rewrite the expression.
y=7π3+62πn3-4cos(3(7π18+2πn3))
y=7π3+62πn3-4cos(3(7π18+2πn3))
Step 7.1.3
Cancel the common factor of 3.
Step 7.1.3.1
Factor 3 out of 6.
y=7π3+3(2)2πn3-4cos(3(7π18+2πn3))
Step 7.1.3.2
Cancel the common factor.
y=7π3+3⋅22πn3-4cos(3(7π18+2πn3))
Step 7.1.3.3
Rewrite the expression.
y=7π3+2(2πn)-4cos(3(7π18+2πn3))
y=7π3+2(2πn)-4cos(3(7π18+2πn3))
Step 7.1.4
Multiply 2 by 2.
y=7π3+4(πn)-4cos(3(7π18+2πn3))
Step 7.1.5
Apply the distributive property.
y=7π3+4πn-4cos(37π18+32πn3)
Step 7.1.6
Cancel the common factor of 3.
Step 7.1.6.1
Factor 3 out of 18.
y=7π3+4πn-4cos(37π3(6)+32πn3)
Step 7.1.6.2
Cancel the common factor.
y=7π3+4πn-4cos(37π3⋅6+32πn3)
Step 7.1.6.3
Rewrite the expression.
y=7π3+4πn-4cos(7π6+32πn3)
y=7π3+4πn-4cos(7π6+32πn3)
Step 7.1.7
Cancel the common factor of 3.
Step 7.1.7.1
Cancel the common factor.
y=7π3+4πn-4cos(7π6+32πn3)
Step 7.1.7.2
Rewrite the expression.
y=7π3+4πn-4cos(7π6+2πn)
y=7π3+4πn-4cos(7π6+2πn)
y=7π3+4πn-4cos(7π6+2πn)
Step 7.2
Simplify with commuting.
Step 7.2.1
Reorder 7π6 and 2πn.
y=7π3+4πn-4cos(2πn+7π6)
Step 7.2.2
Reorder 7π3 and 4πn.
y=4πn+7π3-4cos(2πn+7π6)
y=4πn+7π3-4cos(2πn+7π6)
y=4πn+7π3-4cos(2πn+7π6)
Step 8
Step 8.1
Simplify each term.
Step 8.1.1
Apply the distributive property.
y=611π18+62πn3-4cos(3(11π18+2πn3))
Step 8.1.2
Cancel the common factor of 6.
Step 8.1.2.1
Factor 6 out of 18.
y=611π6(3)+62πn3-4cos(3(11π18+2πn3))
Step 8.1.2.2
Cancel the common factor.
y=611π6⋅3+62πn3-4cos(3(11π18+2πn3))
Step 8.1.2.3
Rewrite the expression.
y=11π3+62πn3-4cos(3(11π18+2πn3))
y=11π3+62πn3-4cos(3(11π18+2πn3))
Step 8.1.3
Cancel the common factor of 3.
Step 8.1.3.1
Factor 3 out of 6.
y=11π3+3(2)2πn3-4cos(3(11π18+2πn3))
Step 8.1.3.2
Cancel the common factor.
y=11π3+3⋅22πn3-4cos(3(11π18+2πn3))
Step 8.1.3.3
Rewrite the expression.
y=11π3+2(2πn)-4cos(3(11π18+2πn3))
y=11π3+2(2πn)-4cos(3(11π18+2πn3))
Step 8.1.4
Multiply 2 by 2.
y=11π3+4(πn)-4cos(3(11π18+2πn3))
Step 8.1.5
Apply the distributive property.
y=11π3+4πn-4cos(311π18+32πn3)
Step 8.1.6
Cancel the common factor of 3.
Step 8.1.6.1
Factor 3 out of 18.
y=11π3+4πn-4cos(311π3(6)+32πn3)
Step 8.1.6.2
Cancel the common factor.
y=11π3+4πn-4cos(311π3⋅6+32πn3)
Step 8.1.6.3
Rewrite the expression.
y=11π3+4πn-4cos(11π6+32πn3)
y=11π3+4πn-4cos(11π6+32πn3)
Step 8.1.7
Cancel the common factor of 3.
Step 8.1.7.1
Cancel the common factor.
y=11π3+4πn-4cos(11π6+32πn3)
Step 8.1.7.2
Rewrite the expression.
y=11π3+4πn-4cos(11π6+2πn)
y=11π3+4πn-4cos(11π6+2πn)
y=11π3+4πn-4cos(11π6+2πn)
Step 8.2
Simplify with commuting.
Step 8.2.1
Reorder 11π6 and 2πn.
y=11π3+4πn-4cos(2πn+11π6)
Step 8.2.2
Reorder 11π3 and 4πn.
y=4πn+11π3-4cos(2πn+11π6)
y=4πn+11π3-4cos(2πn+11π6)
y=4πn+11π3-4cos(2πn+11π6)
Step 9
Find the points where dydx=0.
(7π18+2πn3,4πn+7π3-4cos(2πn+7π6)), for any integer n
(11π18+2πn3,4πn+11π3-4cos(2πn+11π6)), for any integer n
Step 10