Calculus Examples

Find the Derivative Using Quotient Rule - d/dx
x3-8xx-1
Step 1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x3-8x and g(x)=x-1.
(x-1)ddx[x3-8x]-(x3-8x)ddx[x-1](x-1)2
Step 2
Differentiate.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of x3-8x with respect to x is ddx[x3]+ddx[-8x].
(x-1)(ddx[x3]+ddx[-8x])-(x3-8x)ddx[x-1](x-1)2
Step 2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
(x-1)(3x2+ddx[-8x])-(x3-8x)ddx[x-1](x-1)2
(x-1)(3x2+ddx[-8x])-(x3-8x)ddx[x-1](x-1)2
Step 3
Evaluate ddx[-8x].
Tap for more steps...
Step 3.1
Since -8 is constant with respect to x, the derivative of -8x with respect to x is -8ddx[x].
(x-1)(3x2-8ddx[x])-(x3-8x)ddx[x-1](x-1)2
Step 3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x-1)(3x2-81)-(x3-8x)ddx[x-1](x-1)2
Step 3.3
Multiply -8 by 1.
(x-1)(3x2-8)-(x3-8x)ddx[x-1](x-1)2
(x-1)(3x2-8)-(x3-8x)ddx[x-1](x-1)2
Step 4
Differentiate.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of x-1 with respect to x is ddx[x]+ddx[-1].
(x-1)(3x2-8)-(x3-8x)(ddx[x]+ddx[-1])(x-1)2
Step 4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x-1)(3x2-8)-(x3-8x)(1+ddx[-1])(x-1)2
Step 4.3
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
(x-1)(3x2-8)-(x3-8x)(1+0)(x-1)2
Step 4.4
Add 1 and 0.
(x-1)(3x2-8)-(x3-8x)1(x-1)2
(x-1)(3x2-8)-(x3-8x)1(x-1)2
Step 5
Simplify.
Tap for more steps...
Step 5.1
Apply the distributive property.
(x-1)(3x2-8)+(-x3-(-8x))1(x-1)2
Step 5.2
Apply the distributive property.
(x-1)(3x2-8)-x31-(-8x)1(x-1)2
Step 5.3
Simplify the numerator.
Tap for more steps...
Step 5.3.1
Simplify each term.
Tap for more steps...
Step 5.3.1.1
Expand (x-1)(3x2-8) using the FOIL Method.
Tap for more steps...
Step 5.3.1.1.1
Apply the distributive property.
x(3x2-8)-1(3x2-8)-x31-(-8x)1(x-1)2
Step 5.3.1.1.2
Apply the distributive property.
x(3x2)+x-8-1(3x2-8)-x31-(-8x)1(x-1)2
Step 5.3.1.1.3
Apply the distributive property.
x(3x2)+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
x(3x2)+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2
Simplify each term.
Tap for more steps...
Step 5.3.1.2.1
Rewrite using the commutative property of multiplication.
3xx2+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 5.3.1.2.2.1
Move x2.
3(x2x)+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.2.2
Multiply x2 by x.
Tap for more steps...
Step 5.3.1.2.2.2.1
Raise x to the power of 1.
3(x2x1)+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.2.2.2
Use the power rule aman=am+n to combine exponents.
3x2+1+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
3x2+1+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.2.3
Add 2 and 1.
3x3+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
3x3+x-8-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.3
Move -8 to the left of x.
3x3-8x-1(3x2)-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.4
Multiply 3 by -1.
3x3-8x-3x2-1-8-x31-(-8x)1(x-1)2
Step 5.3.1.2.5
Multiply -1 by -8.
3x3-8x-3x2+8-x31-(-8x)1(x-1)2
3x3-8x-3x2+8-x31-(-8x)1(x-1)2
Step 5.3.1.3
Multiply -1 by 1.
3x3-8x-3x2+8-x3-(-8x)1(x-1)2
Step 5.3.1.4
Multiply -8 by -1.
3x3-8x-3x2+8-x3+8x1(x-1)2
Step 5.3.1.5
Multiply 8 by 1.
3x3-8x-3x2+8-x3+8x(x-1)2
3x3-8x-3x2+8-x3+8x(x-1)2
Step 5.3.2
Combine the opposite terms in 3x3-8x-3x2+8-x3+8x.
Tap for more steps...
Step 5.3.2.1
Add -8x and 8x.
3x3-3x2+8-x3+0(x-1)2
Step 5.3.2.2
Add 3x3-3x2+8-x3 and 0.
3x3-3x2+8-x3(x-1)2
3x3-3x2+8-x3(x-1)2
Step 5.3.3
Subtract x3 from 3x3.
2x3-3x2+8(x-1)2
2x3-3x2+8(x-1)2
2x3-3x2+8(x-1)2
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay