Calculus Examples
L(x)=x4L(x)=x4
Step 1
Use the Gini Index formula G=2∫10x-L(x)dxG=2∫10x−L(x)dx.
Step 2
Substitute x4x4 for L(x)L(x).
G=2∫10x-x4dxG=2∫10x−x4dx
Step 3
Step 3.1
Split the single integral into multiple integrals.
G=2(∫10xdx+∫10-x4dx)G=2(∫10xdx+∫10−x4dx)
Step 3.2
By the Power Rule, the integral of xx with respect to xx is 12x212x2.
G=2(12x2]10+∫10-x4dx)G=2(12x2]10+∫10−x4dx)
Step 3.3
Combine 1212 and x2x2.
G=2(x22]10+∫10-x4dx)G=2(x22]10+∫10−x4dx)
Step 3.4
Since -1−1 is constant with respect to xx, move -1−1 out of the integral.
G=2(x22]10-∫10x4dx)G=2(x22]10−∫10x4dx)
Step 3.5
By the Power Rule, the integral of x4x4 with respect to xx is 15x515x5.
G=2(x22]10-(15x5]10))G=2(x22]10−(15x5]10))
Step 3.6
Simplify the answer.
Step 3.6.1
Combine 1515 and x5x5.
G=2(x22]10-(x55]10))G=2(x22]10−(x55]10))
Step 3.6.2
Substitute and simplify.
Step 3.6.2.1
Evaluate x22x22 at 11 and at 00.
G=2((122)-022-(x55]10))G=2((122)−022−(x55]10))
Step 3.6.2.2
Evaluate x55x55 at 11 and at 00.
G=2(122-022-(155-055))G=2(122−022−(155−055))
Step 3.6.2.3
Simplify.
Step 3.6.2.3.1
One to any power is one.
G=2(12-022-(155-055))G=2(12−022−(155−055))
Step 3.6.2.3.2
Raising 00 to any positive power yields 00.
G=2(12-02-(155-055))G=2(12−02−(155−055))
Step 3.6.2.3.3
Cancel the common factor of 00 and 22.
Step 3.6.2.3.3.1
Factor 22 out of 00.
G=2(12-2(0)2-(155-055))G=2(12−2(0)2−(155−055))
Step 3.6.2.3.3.2
Cancel the common factors.
Step 3.6.2.3.3.2.1
Factor 22 out of 22.
G=2(12-2⋅02⋅1-(155-055))G=2(12−2⋅02⋅1−(155−055))
Step 3.6.2.3.3.2.2
Cancel the common factor.
G=2(12-2⋅02⋅1-(155-055))
Step 3.6.2.3.3.2.3
Rewrite the expression.
G=2(12-01-(155-055))
Step 3.6.2.3.3.2.4
Divide 0 by 1.
G=2(12-0-(155-055))
G=2(12-0-(155-055))
G=2(12-0-(155-055))
Step 3.6.2.3.4
Multiply -1 by 0.
G=2(12+0-(155-055))
Step 3.6.2.3.5
Add 12 and 0.
G=2(12-(155-055))
Step 3.6.2.3.6
One to any power is one.
G=2(12-(15-055))
Step 3.6.2.3.7
Raising 0 to any positive power yields 0.
G=2(12-(15-05))
Step 3.6.2.3.8
Cancel the common factor of 0 and 5.
Step 3.6.2.3.8.1
Factor 5 out of 0.
G=2(12-(15-5(0)5))
Step 3.6.2.3.8.2
Cancel the common factors.
Step 3.6.2.3.8.2.1
Factor 5 out of 5.
G=2(12-(15-5⋅05⋅1))
Step 3.6.2.3.8.2.2
Cancel the common factor.
G=2(12-(15-5⋅05⋅1))
Step 3.6.2.3.8.2.3
Rewrite the expression.
G=2(12-(15-01))
Step 3.6.2.3.8.2.4
Divide 0 by 1.
G=2(12-(15-0))
G=2(12-(15-0))
G=2(12-(15-0))
Step 3.6.2.3.9
Multiply -1 by 0.
G=2(12-(15+0))
Step 3.6.2.3.10
Add 15 and 0.
G=2(12-15)
Step 3.6.2.3.11
To write 12 as a fraction with a common denominator, multiply by 55.
G=2(12⋅55-15)
Step 3.6.2.3.12
To write -15 as a fraction with a common denominator, multiply by 22.
G=2(12⋅55-15⋅22)
Step 3.6.2.3.13
Write each expression with a common denominator of 10, by multiplying each by an appropriate factor of 1.
Step 3.6.2.3.13.1
Multiply 12 by 55.
G=2(52⋅5-15⋅22)
Step 3.6.2.3.13.2
Multiply 2 by 5.
G=2(510-15⋅22)
Step 3.6.2.3.13.3
Multiply 15 by 22.
G=2(510-25⋅2)
Step 3.6.2.3.13.4
Multiply 5 by 2.
G=2(510-210)
G=2(510-210)
Step 3.6.2.3.14
Combine the numerators over the common denominator.
G=25-210
Step 3.6.2.3.15
Subtract 2 from 5.
G=2(310)
Step 3.6.2.3.16
Combine 2 and 310.
G=2⋅310
Step 3.6.2.3.17
Multiply 2 by 3.
G=610
Step 3.6.2.3.18
Cancel the common factor of 6 and 10.
Step 3.6.2.3.18.1
Factor 2 out of 6.
G=2(3)10
Step 3.6.2.3.18.2
Cancel the common factors.
Step 3.6.2.3.18.2.1
Factor 2 out of 10.
G=2⋅32⋅5
Step 3.6.2.3.18.2.2
Cancel the common factor.
G=2⋅32⋅5
Step 3.6.2.3.18.2.3
Rewrite the expression.
G=35
G=35
G=35
G=35
G=35
G=35
G=35
Step 4
Convert to decimal.
G=0.6