Calculus Examples
L(x)=x2L(x)=x2
Step 1
Use the Gini Index formula G=2∫10x-L(x)dxG=2∫10x−L(x)dx.
Step 2
Substitute x2x2 for L(x)L(x).
G=2∫10x-x2dxG=2∫10x−x2dx
Step 3
Step 3.1
Split the single integral into multiple integrals.
G=2(∫10xdx+∫10-x2dx)G=2(∫10xdx+∫10−x2dx)
Step 3.2
By the Power Rule, the integral of xx with respect to xx is 12x212x2.
G=2(12x2]10+∫10-x2dx)G=2(12x2]10+∫10−x2dx)
Step 3.3
Combine 1212 and x2x2.
G=2(x22]10+∫10-x2dx)G=2(x22]10+∫10−x2dx)
Step 3.4
Since -1−1 is constant with respect to xx, move -1−1 out of the integral.
G=2(x22]10-∫10x2dx)G=2(x22]10−∫10x2dx)
Step 3.5
By the Power Rule, the integral of x2x2 with respect to xx is 13x313x3.
G=2(x22]10-(13x3]10))G=2(x22]10−(13x3]10))
Step 3.6
Simplify the answer.
Step 3.6.1
Combine 1313 and x3x3.
G=2(x22]10-(x33]10))G=2(x22]10−(x33]10))
Step 3.6.2
Substitute and simplify.
Step 3.6.2.1
Evaluate x22x22 at 11 and at 00.
G=2((122)-022-(x33]10))G=2((122)−022−(x33]10))
Step 3.6.2.2
Evaluate x33x33 at 11 and at 00.
G=2(122-022-(133-033))G=2(122−022−(133−033))
Step 3.6.2.3
Simplify.
Step 3.6.2.3.1
One to any power is one.
G=2(12-022-(133-033))G=2(12−022−(133−033))
Step 3.6.2.3.2
Raising 00 to any positive power yields 00.
G=2(12-02-(133-033))G=2(12−02−(133−033))
Step 3.6.2.3.3
Cancel the common factor of 00 and 22.
Step 3.6.2.3.3.1
Factor 22 out of 00.
G=2(12-2(0)2-(133-033))G=2(12−2(0)2−(133−033))
Step 3.6.2.3.3.2
Cancel the common factors.
Step 3.6.2.3.3.2.1
Factor 22 out of 22.
G=2(12-2⋅02⋅1-(133-033))G=2(12−2⋅02⋅1−(133−033))
Step 3.6.2.3.3.2.2
Cancel the common factor.
G=2(12-2⋅02⋅1-(133-033))
Step 3.6.2.3.3.2.3
Rewrite the expression.
G=2(12-01-(133-033))
Step 3.6.2.3.3.2.4
Divide 0 by 1.
G=2(12-0-(133-033))
G=2(12-0-(133-033))
G=2(12-0-(133-033))
Step 3.6.2.3.4
Multiply -1 by 0.
G=2(12+0-(133-033))
Step 3.6.2.3.5
Add 12 and 0.
G=2(12-(133-033))
Step 3.6.2.3.6
One to any power is one.
G=2(12-(13-033))
Step 3.6.2.3.7
Raising 0 to any positive power yields 0.
G=2(12-(13-03))
Step 3.6.2.3.8
Cancel the common factor of 0 and 3.
Step 3.6.2.3.8.1
Factor 3 out of 0.
G=2(12-(13-3(0)3))
Step 3.6.2.3.8.2
Cancel the common factors.
Step 3.6.2.3.8.2.1
Factor 3 out of 3.
G=2(12-(13-3⋅03⋅1))
Step 3.6.2.3.8.2.2
Cancel the common factor.
G=2(12-(13-3⋅03⋅1))
Step 3.6.2.3.8.2.3
Rewrite the expression.
G=2(12-(13-01))
Step 3.6.2.3.8.2.4
Divide 0 by 1.
G=2(12-(13-0))
G=2(12-(13-0))
G=2(12-(13-0))
Step 3.6.2.3.9
Multiply -1 by 0.
G=2(12-(13+0))
Step 3.6.2.3.10
Add 13 and 0.
G=2(12-13)
Step 3.6.2.3.11
To write 12 as a fraction with a common denominator, multiply by 33.
G=2(12⋅33-13)
Step 3.6.2.3.12
To write -13 as a fraction with a common denominator, multiply by 22.
G=2(12⋅33-13⋅22)
Step 3.6.2.3.13
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 3.6.2.3.13.1
Multiply 12 by 33.
G=2(32⋅3-13⋅22)
Step 3.6.2.3.13.2
Multiply 2 by 3.
G=2(36-13⋅22)
Step 3.6.2.3.13.3
Multiply 13 by 22.
G=2(36-23⋅2)
Step 3.6.2.3.13.4
Multiply 3 by 2.
G=2(36-26)
G=2(36-26)
Step 3.6.2.3.14
Combine the numerators over the common denominator.
G=23-26
Step 3.6.2.3.15
Subtract 2 from 3.
G=2(16)
Step 3.6.2.3.16
Combine 2 and 16.
G=26
Step 3.6.2.3.17
Cancel the common factor of 2 and 6.
Step 3.6.2.3.17.1
Factor 2 out of 2.
G=2(1)6
Step 3.6.2.3.17.2
Cancel the common factors.
Step 3.6.2.3.17.2.1
Factor 2 out of 6.
G=2⋅12⋅3
Step 3.6.2.3.17.2.2
Cancel the common factor.
G=2⋅12⋅3
Step 3.6.2.3.17.2.3
Rewrite the expression.
G=13
G=13
G=13
G=13
G=13
G=13
G=13
Step 4
Convert to decimal.
G=0.‾3