Calculus Examples
D(p)=1500-12pD(p)=1500−12p , p=100p=100
Step 1
Write D(p)=1500-12pD(p)=1500−12p as an equation.
q=1500-12pq=1500−12p
Step 2
To find elasticity of demand, use the formula E=|pqdqdp|E=∣∣∣pqdqdp∣∣∣.
Step 3
Step 3.1
Substitute 100100 for pp.
q=1500-12⋅100q=1500−12⋅100
Step 3.2
Multiply -12−12 by 100100.
q=1500-1200q=1500−1200
Step 3.3
Subtract 12001200 from 15001500.
q=300q=300
q=300q=300
Step 4
Step 4.1
Differentiate the demand function.
dqdp=ddp[1500-12p]dqdp=ddp[1500−12p]
Step 4.2
Differentiate.
Step 4.2.1
By the Sum Rule, the derivative of 1500-12p1500−12p with respect to pp is ddp[1500]+ddp[-12p]ddp[1500]+ddp[−12p].
dqdp=ddp[1500]+ddp[-12p]dqdp=ddp[1500]+ddp[−12p]
Step 4.2.2
Since 15001500 is constant with respect to pp, the derivative of 15001500 with respect to pp is 00.
dqdp=0+ddp[-12p]dqdp=0+ddp[−12p]
dqdp=0+ddp[-12p]dqdp=0+ddp[−12p]
Step 4.3
Evaluate ddp[-12p]ddp[−12p].
Step 4.3.1
Since -12−12 is constant with respect to pp, the derivative of -12p−12p with respect to pp is -12ddp[p]−12ddp[p].
dqdp=0-12ddp[p]dqdp=0−12ddp[p]
Step 4.3.2
Differentiate using the Power Rule which states that ddp[pn]ddp[pn] is npn-1npn−1 where n=1n=1.
dqdp=0-12⋅1dqdp=0−12⋅1
Step 4.3.3
Multiply -12−12 by 11.
dqdp=0-12dqdp=0−12
dqdp=0-12dqdp=0−12
Step 4.4
Subtract 1212 from 00.
dqdp=-12dqdp=−12
dqdp=-12dqdp=−12
Step 5
Step 5.1
Substitute -12 for dqdp.
E=|pq⋅-12|
Step 5.2
Substitute the values of p and q.
E=|100300⋅-12|
Step 5.3
Cancel the common factor of 12.
Step 5.3.1
Factor 12 out of 300.
E=|10012(25)⋅-12|
Step 5.3.2
Factor 12 out of -12.
E=|10012⋅25⋅(12⋅-1)|
Step 5.3.3
Cancel the common factor.
E=|10012⋅25⋅(12⋅-1)|
Step 5.3.4
Rewrite the expression.
E=|10025⋅-1|
E=|10025⋅-1|
Step 5.4
Combine 10025 and -1.
E=|100⋅-125|
Step 5.5
Multiply 100 by -1.
E=|-10025|
Step 5.6
Divide -100 by 25.
E=|-4|
Step 5.7
The absolute value is the distance between a number and zero. The distance between -4 and 0 is 4.
E=4
E=4
Step 6
Since E>1, the demand is elastic.
E=4
Elastic