Calculus Examples

D(p)=1500-12pD(p)=150012p , p=100p=100
Step 1
Write D(p)=1500-12pD(p)=150012p as an equation.
q=1500-12pq=150012p
Step 2
To find elasticity of demand, use the formula E=|pqdqdp|E=pqdqdp.
Step 3
Substitute 100100 for pp in q=1500-12pq=150012p and simplify to find qq.
Tap for more steps...
Step 3.1
Substitute 100100 for pp.
q=1500-12100q=150012100
Step 3.2
Multiply -1212 by 100100.
q=1500-1200q=15001200
Step 3.3
Subtract 12001200 from 15001500.
q=300q=300
q=300q=300
Step 4
Find dqdpdqdp by differentiating the demand function.
Tap for more steps...
Step 4.1
Differentiate the demand function.
dqdp=ddp[1500-12p]dqdp=ddp[150012p]
Step 4.2
Differentiate.
Tap for more steps...
Step 4.2.1
By the Sum Rule, the derivative of 1500-12p150012p with respect to pp is ddp[1500]+ddp[-12p]ddp[1500]+ddp[12p].
dqdp=ddp[1500]+ddp[-12p]dqdp=ddp[1500]+ddp[12p]
Step 4.2.2
Since 15001500 is constant with respect to pp, the derivative of 15001500 with respect to pp is 00.
dqdp=0+ddp[-12p]dqdp=0+ddp[12p]
dqdp=0+ddp[-12p]dqdp=0+ddp[12p]
Step 4.3
Evaluate ddp[-12p]ddp[12p].
Tap for more steps...
Step 4.3.1
Since -1212 is constant with respect to pp, the derivative of -12p12p with respect to pp is -12ddp[p]12ddp[p].
dqdp=0-12ddp[p]dqdp=012ddp[p]
Step 4.3.2
Differentiate using the Power Rule which states that ddp[pn]ddp[pn] is npn-1npn1 where n=1n=1.
dqdp=0-121dqdp=0121
Step 4.3.3
Multiply -1212 by 11.
dqdp=0-12dqdp=012
dqdp=0-12dqdp=012
Step 4.4
Subtract 1212 from 00.
dqdp=-12dqdp=12
dqdp=-12dqdp=12
Step 5
Substitute into the formula for elasticity E=|pqdqdp|E=pqdqdp and simplify.
Tap for more steps...
Step 5.1
Substitute -12 for dqdp.
E=|pq-12|
Step 5.2
Substitute the values of p and q.
E=|100300-12|
Step 5.3
Cancel the common factor of 12.
Tap for more steps...
Step 5.3.1
Factor 12 out of 300.
E=|10012(25)-12|
Step 5.3.2
Factor 12 out of -12.
E=|1001225(12-1)|
Step 5.3.3
Cancel the common factor.
E=|1001225(12-1)|
Step 5.3.4
Rewrite the expression.
E=|10025-1|
E=|10025-1|
Step 5.4
Combine 10025 and -1.
E=|100-125|
Step 5.5
Multiply 100 by -1.
E=|-10025|
Step 5.6
Divide -100 by 25.
E=|-4|
Step 5.7
The absolute value is the distance between a number and zero. The distance between -4 and 0 is 4.
E=4
E=4
Step 6
Since E>1, the demand is elastic.
E=4
Elastic
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay