Calculus Examples
y=x3-10x2+25xy=x3−10x2+25x , y=xy=x
Step 1
To find the volume of the solid, first define the area of each slice then integrate across the range. The area of each slice is the area of a circle with radius f(x)f(x) and A=πr2A=πr2.
V=π∫40(f(x))2-(g(x))2dxV=π∫40(f(x))2−(g(x))2dx where f(x)=x3-10x2+25xf(x)=x3−10x2+25x and g(x)=xg(x)=x
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite (x3-10x2+25x)2(x3−10x2+25x)2 as (x3-10x2+25x)(x3-10x2+25x)(x3−10x2+25x)(x3−10x2+25x).
V=(x3-10x2+25x)(x3-10x2+25x)-(x)2V=(x3−10x2+25x)(x3−10x2+25x)−(x)2
Step 2.1.2
Expand (x3-10x2+25x)(x3-10x2+25x)(x3−10x2+25x)(x3−10x2+25x) by multiplying each term in the first expression by each term in the second expression.
V=x3x3+x3(-10x2)+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x3x3+x3(−10x2)+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3
Simplify each term.
Step 2.1.3.1
Multiply x3x3 by x3x3 by adding the exponents.
Step 2.1.3.1.1
Use the power rule aman=am+naman=am+n to combine exponents.
V=x3+3+x3(-10x2)+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x3+3+x3(−10x2)+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.1.2
Add 33 and 33.
V=x6+x3(-10x2)+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6+x3(−10x2)+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
V=x6+x3(-10x2)+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6+x3(−10x2)+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.2
Rewrite using the commutative property of multiplication.
V=x6-10x3x2+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x3x2+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.3
Multiply x3x3 by x2x2 by adding the exponents.
Step 2.1.3.3.1
Move x2x2.
V=x6-10(x2x3)+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10(x2x3)+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.3.2
Use the power rule aman=am+naman=am+n to combine exponents.
V=x6-10x2+3+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x2+3+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.3.3
Add 22 and 33.
V=x6-10x5+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
V=x6-10x5+x3(25x)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+x3(25x)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.4
Rewrite using the commutative property of multiplication.
V=x6-10x5+25x3x-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x3x−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.5
Multiply x3x3 by xx by adding the exponents.
Step 2.1.3.5.1
Move xx.
V=x6-10x5+25(x⋅x3)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25(x⋅x3)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.5.2
Multiply xx by x3x3.
Step 2.1.3.5.2.1
Raise xx to the power of 11.
V=x6-10x5+25(x⋅x3)-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25(x⋅x3)−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.5.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
V=x6-10x5+25x1+3-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x1+3−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
V=x6-10x5+25x1+3-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x1+3−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.5.3
Add 11 and 33.
V=x6-10x5+25x4-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
V=x6-10x5+25x4-10x2x3-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10x2x3−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.6
Multiply x2x2 by x3x3 by adding the exponents.
Step 2.1.3.6.1
Move x3x3.
V=x6-10x5+25x4-10(x3x2)-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10(x3x2)−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.6.2
Use the power rule aman=am+naman=am+n to combine exponents.
V=x6-10x5+25x4-10x3+2-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10x3+2−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.6.3
Add 33 and 22.
V=x6-10x5+25x4-10x5-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10x5−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
V=x6-10x5+25x4-10x5-10x2(-10x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2V=x6−10x5+25x4−10x5−10x2(−10x2)−10x2(25x)+25x⋅x3+25x(−10x2)+25x(25x)−(x)2
Step 2.1.3.7
Rewrite using the commutative property of multiplication.
V=x6-10x5+25x4-10x5-10⋅(-10x2x2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.8
Multiply x2 by x2 by adding the exponents.
Step 2.1.3.8.1
Move x2.
V=x6-10x5+25x4-10x5-10⋅(-10(x2x2))-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.8.2
Use the power rule aman=am+n to combine exponents.
V=x6-10x5+25x4-10x5-10⋅(-10x2+2)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.8.3
Add 2 and 2.
V=x6-10x5+25x4-10x5-10⋅(-10x4)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5-10⋅(-10x4)-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.9
Multiply -10 by -10.
V=x6-10x5+25x4-10x5+100x4-10x2(25x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.10
Rewrite using the commutative property of multiplication.
V=x6-10x5+25x4-10x5+100x4-10⋅(25x2x)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.11
Multiply x2 by x by adding the exponents.
Step 2.1.3.11.1
Move x.
V=x6-10x5+25x4-10x5+100x4-10⋅(25(x⋅x2))+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.11.2
Multiply x by x2.
Step 2.1.3.11.2.1
Raise x to the power of 1.
V=x6-10x5+25x4-10x5+100x4-10⋅(25(x⋅x2))+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.11.2.2
Use the power rule aman=am+n to combine exponents.
V=x6-10x5+25x4-10x5+100x4-10⋅(25x1+2)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-10⋅(25x1+2)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.11.3
Add 1 and 2.
V=x6-10x5+25x4-10x5+100x4-10⋅(25x3)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-10⋅(25x3)+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.12
Multiply -10 by 25.
V=x6-10x5+25x4-10x5+100x4-250x3+25x⋅x3+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.13
Multiply x by x3 by adding the exponents.
Step 2.1.3.13.1
Move x3.
V=x6-10x5+25x4-10x5+100x4-250x3+25(x3x)+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.13.2
Multiply x3 by x.
Step 2.1.3.13.2.1
Raise x to the power of 1.
V=x6-10x5+25x4-10x5+100x4-250x3+25(x3x)+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.13.2.2
Use the power rule aman=am+n to combine exponents.
V=x6-10x5+25x4-10x5+100x4-250x3+25x3+1+25x(-10x2)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x3+1+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.13.3
Add 3 and 1.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25x(-10x2)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25x(-10x2)+25x(25x)-(x)2
Step 2.1.3.14
Rewrite using the commutative property of multiplication.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10x⋅x2)+25x(25x)-(x)2
Step 2.1.3.15
Multiply x by x2 by adding the exponents.
Step 2.1.3.15.1
Move x2.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10(x2x))+25x(25x)-(x)2
Step 2.1.3.15.2
Multiply x2 by x.
Step 2.1.3.15.2.1
Raise x to the power of 1.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10(x2x))+25x(25x)-(x)2
Step 2.1.3.15.2.2
Use the power rule aman=am+n to combine exponents.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10x2+1)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10x2+1)+25x(25x)-(x)2
Step 2.1.3.15.3
Add 2 and 1.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10x3)+25x(25x)-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x4+25⋅(-10x3)+25x(25x)-(x)2
Step 2.1.3.16
Multiply 25 by -10.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+25x(25x)-(x)2
Step 2.1.3.17
Rewrite using the commutative property of multiplication.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+25⋅(25x⋅x)-(x)2
Step 2.1.3.18
Multiply x by x by adding the exponents.
Step 2.1.3.18.1
Move x.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+25⋅(25(x⋅x))-(x)2
Step 2.1.3.18.2
Multiply x by x.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+25⋅(25x2)-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+25⋅(25x2)-(x)2
Step 2.1.3.19
Multiply 25 by 25.
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+625x2-(x)2
V=x6-10x5+25x4-10x5+100x4-250x3+25x4-250x3+625x2-(x)2
Step 2.1.4
Subtract 10x5 from -10x5.
V=x6-20x5+25x4+100x4-250x3+25x4-250x3+625x2-(x)2
Step 2.1.5
Add 25x4 and 100x4.
V=x6-20x5+125x4-250x3+25x4-250x3+625x2-(x)2
Step 2.1.6
Add 125x4 and 25x4.
V=x6-20x5+150x4-250x3-250x3+625x2-(x)2
Step 2.1.7
Subtract 250x3 from -250x3.
V=x6-20x5+150x4-500x3+625x2-x2
V=x6-20x5+150x4-500x3+625x2-x2
Step 2.2
Subtract x2 from 625x2.
V=x6-20x5+150x4-500x3+624x2
V=x6-20x5+150x4-500x3+624x2
Step 3
Split the single integral into multiple integrals.
V=π(∫40x6dx+∫40-20x5dx+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 4
By the Power Rule, the integral of x6 with respect to x is 17x7.
V=π(17x7]40+∫40-20x5dx+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 5
Combine 17 and x7.
V=π(x77]40+∫40-20x5dx+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 6
Since -20 is constant with respect to x, move -20 out of the integral.
V=π(x77]40-20∫40x5dx+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 7
By the Power Rule, the integral of x5 with respect to x is 16x6.
V=π(x77]40-20(16x6]40)+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 8
Combine 16 and x6.
V=π(x77]40-20(x66]40)+∫40150x4dx+∫40-500x3dx+∫40624x2dx)
Step 9
Since 150 is constant with respect to x, move 150 out of the integral.
V=π(x77]40-20(x66]40)+150∫40x4dx+∫40-500x3dx+∫40624x2dx)
Step 10
By the Power Rule, the integral of x4 with respect to x is 15x5.
V=π(x77]40-20(x66]40)+150(15x5]40)+∫40-500x3dx+∫40624x2dx)
Step 11
Combine 15 and x5.
V=π(x77]40-20(x66]40)+150(x55]40)+∫40-500x3dx+∫40624x2dx)
Step 12
Since -500 is constant with respect to x, move -500 out of the integral.
V=π(x77]40-20(x66]40)+150(x55]40)-500∫40x3dx+∫40624x2dx)
Step 13
By the Power Rule, the integral of x3 with respect to x is 14x4.
V=π(x77]40-20(x66]40)+150(x55]40)-500(14x4]40)+∫40624x2dx)
Step 14
Combine 14 and x4.
V=π(x77]40-20(x66]40)+150(x55]40)-500(x44]40)+∫40624x2dx)
Step 15
Since 624 is constant with respect to x, move 624 out of the integral.
V=π(x77]40-20(x66]40)+150(x55]40)-500(x44]40)+624∫40x2dx)
Step 16
By the Power Rule, the integral of x2 with respect to x is 13x3.
V=π(x77]40-20(x66]40)+150(x55]40)-500(x44]40)+624(13x3]40))
Step 17
Step 17.1
Combine 13 and x3.
V=π(x77]40-20(x66]40)+150(x55]40)-500(x44]40)+624(x33]40))
Step 17.2
Substitute and simplify.
Step 17.2.1
Evaluate x77 at 4 and at 0.
V=π((477)-077-20(x66]40)+150(x55]40)-500(x44]40)+624(x33]40))
Step 17.2.2
Evaluate x66 at 4 and at 0.
V=π(477-077-20(466-066)+150(x55]40)-500(x44]40)+624(x33]40))
Step 17.2.3
Evaluate x55 at 4 and at 0.
V=π(477-077-20(466-066)+150((455)-055)-500(x44]40)+624(x33]40))
Step 17.2.4
Evaluate x44 at 4 and at 0.
V=π(477-077-20(466-066)+150(455-055)-500(444-044)+624(x33]40))
Step 17.2.5
Evaluate x33 at 4 and at 0.
V=π(477-077-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6
Simplify.
Step 17.2.6.1
Raise 4 to the power of 7.
V=π(163847-077-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.2
Raising 0 to any positive power yields 0.
V=π(163847-07-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.3
Cancel the common factor of 0 and 7.
Step 17.2.6.3.1
Factor 7 out of 0.
V=π(163847-7(0)7-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.3.2
Cancel the common factors.
Step 17.2.6.3.2.1
Factor 7 out of 7.
V=π(163847-7⋅07⋅1-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.3.2.2
Cancel the common factor.
V=π(163847-7⋅07⋅1-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.3.2.3
Rewrite the expression.
V=π(163847-01-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.3.2.4
Divide 0 by 1.
V=π(163847-0-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-0-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-0-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.4
Multiply -1 by 0.
V=π(163847+0-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.5
Add 163847 and 0.
V=π(163847-20(466-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.6
Raise 4 to the power of 6.
V=π(163847-20(40966-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.7
Cancel the common factor of 4096 and 6.
Step 17.2.6.7.1
Factor 2 out of 4096.
V=π(163847-20(2(2048)6-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.7.2
Cancel the common factors.
Step 17.2.6.7.2.1
Factor 2 out of 6.
V=π(163847-20(2⋅20482⋅3-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.7.2.2
Cancel the common factor.
V=π(163847-20(2⋅20482⋅3-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.7.2.3
Rewrite the expression.
V=π(163847-20(20483-066)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-20(20483-066)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-20(20483-066)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.8
Raising 0 to any positive power yields 0.
V=π(163847-20(20483-06)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.9
Cancel the common factor of 0 and 6.
Step 17.2.6.9.1
Factor 6 out of 0.
V=π(163847-20(20483-6(0)6)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.9.2
Cancel the common factors.
Step 17.2.6.9.2.1
Factor 6 out of 6.
V=π(163847-20(20483-6⋅06⋅1)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.9.2.2
Cancel the common factor.
V=π(163847-20(20483-6⋅06⋅1)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.9.2.3
Rewrite the expression.
V=π(163847-20(20483-01)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.9.2.4
Divide 0 by 1.
V=π(163847-20(20483-0)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-20(20483-0)+150(455-055)-500(444-044)+624((433)-033))
V=π(163847-20(20483-0)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.10
Multiply -1 by 0.
V=π(163847-20(20483+0)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.11
Add 20483 and 0.
V=π(163847-20(20483)+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.12
Combine -20 and 20483.
V=π(163847+-20⋅20483+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.13
Multiply -20 by 2048.
V=π(163847+-409603+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.14
Move the negative in front of the fraction.
V=π(163847-409603+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.15
To write 163847 as a fraction with a common denominator, multiply by 33.
V=π(163847⋅33-409603+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.16
To write -409603 as a fraction with a common denominator, multiply by 77.
V=π(163847⋅33-409603⋅77+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.17
Write each expression with a common denominator of 21, by multiplying each by an appropriate factor of 1.
Step 17.2.6.17.1
Multiply 163847 by 33.
V=π(16384⋅37⋅3-409603⋅77+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.17.2
Multiply 7 by 3.
V=π(16384⋅321-409603⋅77+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.17.3
Multiply 409603 by 77.
V=π(16384⋅321-40960⋅73⋅7+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.17.4
Multiply 3 by 7.
V=π(16384⋅321-40960⋅721+150(455-055)-500(444-044)+624((433)-033))
V=π(16384⋅321-40960⋅721+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.18
Combine the numerators over the common denominator.
V=π(16384⋅3-40960⋅721+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.19
Simplify the numerator.
Step 17.2.6.19.1
Multiply 16384 by 3.
V=π(49152-40960⋅721+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.19.2
Multiply -40960 by 7.
V=π(49152-28672021+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.19.3
Subtract 286720 from 49152.
V=π(-23756821+150(455-055)-500(444-044)+624((433)-033))
V=π(-23756821+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.20
Move the negative in front of the fraction.
V=π(-23756821+150(455-055)-500(444-044)+624((433)-033))
Step 17.2.6.21
Raise 4 to the power of 5.
V=π(-23756821+150(10245-055)-500(444-044)+624((433)-033))
Step 17.2.6.22
Raising 0 to any positive power yields 0.
V=π(-23756821+150(10245-05)-500(444-044)+624((433)-033))
Step 17.2.6.23
Cancel the common factor of 0 and 5.
Step 17.2.6.23.1
Factor 5 out of 0.
V=π(-23756821+150(10245-5(0)5)-500(444-044)+624((433)-033))
Step 17.2.6.23.2
Cancel the common factors.
Step 17.2.6.23.2.1
Factor 5 out of 5.
V=π(-23756821+150(10245-5⋅05⋅1)-500(444-044)+624((433)-033))
Step 17.2.6.23.2.2
Cancel the common factor.
V=π(-23756821+150(10245-5⋅05⋅1)-500(444-044)+624((433)-033))
Step 17.2.6.23.2.3
Rewrite the expression.
V=π(-23756821+150(10245-01)-500(444-044)+624((433)-033))
Step 17.2.6.23.2.4
Divide 0 by 1.
V=π(-23756821+150(10245-0)-500(444-044)+624((433)-033))
V=π(-23756821+150(10245-0)-500(444-044)+624((433)-033))
V=π(-23756821+150(10245-0)-500(444-044)+624((433)-033))
Step 17.2.6.24
Multiply -1 by 0.
V=π(-23756821+150(10245+0)-500(444-044)+624((433)-033))
Step 17.2.6.25
Add 10245 and 0.
V=π(-23756821+150(10245)-500(444-044)+624((433)-033))
Step 17.2.6.26
Combine 150 and 10245.
V=π(-23756821+150⋅10245-500(444-044)+624((433)-033))
Step 17.2.6.27
Multiply 150 by 1024.
V=π(-23756821+1536005-500(444-044)+624((433)-033))
Step 17.2.6.28
Cancel the common factor of 153600 and 5.
Step 17.2.6.28.1
Factor 5 out of 153600.
V=π(-23756821+5⋅307205-500(444-044)+624((433)-033))
Step 17.2.6.28.2
Cancel the common factors.
Step 17.2.6.28.2.1
Factor 5 out of 5.
V=π(-23756821+5⋅307205(1)-500(444-044)+624((433)-033))
Step 17.2.6.28.2.2
Cancel the common factor.
V=π(-23756821+5⋅307205⋅1-500(444-044)+624((433)-033))
Step 17.2.6.28.2.3
Rewrite the expression.
V=π(-23756821+307201-500(444-044)+624((433)-033))
Step 17.2.6.28.2.4
Divide 30720 by 1.
V=π(-23756821+30720-500(444-044)+624((433)-033))
V=π(-23756821+30720-500(444-044)+624((433)-033))
V=π(-23756821+30720-500(444-044)+624((433)-033))
Step 17.2.6.29
To write 30720 as a fraction with a common denominator, multiply by 2121.
V=π(-23756821+30720⋅2121-500(444-044)+624((433)-033))
Step 17.2.6.30
Combine 30720 and 2121.
V=π(-23756821+30720⋅2121-500(444-044)+624((433)-033))
Step 17.2.6.31
Combine the numerators over the common denominator.
V=π(-237568+30720⋅2121-500(444-044)+624((433)-033))
Step 17.2.6.32
Simplify the numerator.
Step 17.2.6.32.1
Multiply 30720 by 21.
V=π(-237568+64512021-500(444-044)+624((433)-033))
Step 17.2.6.32.2
Add -237568 and 645120.
V=π(40755221-500(444-044)+624((433)-033))
V=π(40755221-500(444-044)+624((433)-033))
Step 17.2.6.33
Raise 4 to the power of 4.
V=π(40755221-500(2564-044)+624((433)-033))
Step 17.2.6.34
Cancel the common factor of 256 and 4.
Step 17.2.6.34.1
Factor 4 out of 256.
V=π(40755221-500(4⋅644-044)+624((433)-033))
Step 17.2.6.34.2
Cancel the common factors.
Step 17.2.6.34.2.1
Factor 4 out of 4.
V=π(40755221-500(4⋅644(1)-044)+624((433)-033))
Step 17.2.6.34.2.2
Cancel the common factor.
V=π(40755221-500(4⋅644⋅1-044)+624((433)-033))
Step 17.2.6.34.2.3
Rewrite the expression.
V=π(40755221-500(641-044)+624((433)-033))
Step 17.2.6.34.2.4
Divide 64 by 1.
V=π(40755221-500(64-044)+624((433)-033))
V=π(40755221-500(64-044)+624((433)-033))
V=π(40755221-500(64-044)+624((433)-033))
Step 17.2.6.35
Raising 0 to any positive power yields 0.
V=π(40755221-500(64-04)+624((433)-033))
Step 17.2.6.36
Cancel the common factor of 0 and 4.
Step 17.2.6.36.1
Factor 4 out of 0.
V=π(40755221-500(64-4(0)4)+624((433)-033))
Step 17.2.6.36.2
Cancel the common factors.
Step 17.2.6.36.2.1
Factor 4 out of 4.
V=π(40755221-500(64-4⋅04⋅1)+624((433)-033))
Step 17.2.6.36.2.2
Cancel the common factor.
V=π(40755221-500(64-4⋅04⋅1)+624((433)-033))
Step 17.2.6.36.2.3
Rewrite the expression.
V=π(40755221-500(64-01)+624((433)-033))
Step 17.2.6.36.2.4
Divide 0 by 1.
V=π(40755221-500(64-0)+624((433)-033))
V=π(40755221-500(64-0)+624((433)-033))
V=π(40755221-500(64-0)+624((433)-033))
Step 17.2.6.37
Multiply -1 by 0.
V=π(40755221-500(64+0)+624((433)-033))
Step 17.2.6.38
Add 64 and 0.
V=π(40755221-500⋅64+624((433)-033))
Step 17.2.6.39
Multiply -500 by 64.
V=π(40755221-32000+624((433)-033))
Step 17.2.6.40
To write -32000 as a fraction with a common denominator, multiply by 2121.
V=π(40755221-32000⋅2121+624((433)-033))
Step 17.2.6.41
Combine -32000 and 2121.
V=π(40755221+-32000⋅2121+624((433)-033))
Step 17.2.6.42
Combine the numerators over the common denominator.
V=π(407552-32000⋅2121+624((433)-033))
Step 17.2.6.43
Simplify the numerator.
Step 17.2.6.43.1
Multiply -32000 by 21.
V=π(407552-67200021+624((433)-033))
Step 17.2.6.43.2
Subtract 672000 from 407552.
V=π(-26444821+624((433)-033))
V=π(-26444821+624((433)-033))
Step 17.2.6.44
Move the negative in front of the fraction.
V=π(-26444821+624((433)-033))
Step 17.2.6.45
Raise 4 to the power of 3.
V=π(-26444821+624(643-033))
Step 17.2.6.46
Raising 0 to any positive power yields 0.
V=π(-26444821+624(643-03))
Step 17.2.6.47
Cancel the common factor of 0 and 3.
Step 17.2.6.47.1
Factor 3 out of 0.
V=π(-26444821+624(643-3(0)3))
Step 17.2.6.47.2
Cancel the common factors.
Step 17.2.6.47.2.1
Factor 3 out of 3.
V=π(-26444821+624(643-3⋅03⋅1))
Step 17.2.6.47.2.2
Cancel the common factor.
V=π(-26444821+624(643-3⋅03⋅1))
Step 17.2.6.47.2.3
Rewrite the expression.
V=π(-26444821+624(643-01))
Step 17.2.6.47.2.4
Divide 0 by 1.
V=π(-26444821+624(643-0))
V=π(-26444821+624(643-0))
V=π(-26444821+624(643-0))
Step 17.2.6.48
Multiply -1 by 0.
V=π(-26444821+624(643+0))
Step 17.2.6.49
Add 643 and 0.
V=π(-26444821+624(643))
Step 17.2.6.50
Combine 624 and 643.
V=π(-26444821+624⋅643)
Step 17.2.6.51
Multiply 624 by 64.
V=π(-26444821+399363)
Step 17.2.6.52
Cancel the common factor of 39936 and 3.
Step 17.2.6.52.1
Factor 3 out of 39936.
V=π(-26444821+3⋅133123)
Step 17.2.6.52.2
Cancel the common factors.
Step 17.2.6.52.2.1
Factor 3 out of 3.
V=π(-26444821+3⋅133123(1))
Step 17.2.6.52.2.2
Cancel the common factor.
V=π(-26444821+3⋅133123⋅1)
Step 17.2.6.52.2.3
Rewrite the expression.
V=π(-26444821+133121)
Step 17.2.6.52.2.4
Divide 13312 by 1.
V=π(-26444821+13312)
V=π(-26444821+13312)
V=π(-26444821+13312)
Step 17.2.6.53
To write 13312 as a fraction with a common denominator, multiply by 2121.
V=π(-26444821+13312⋅2121)
Step 17.2.6.54
Combine 13312 and 2121.
V=π(-26444821+13312⋅2121)
Step 17.2.6.55
Combine the numerators over the common denominator.
V=π(-264448+13312⋅2121)
Step 17.2.6.56
Simplify the numerator.
Step 17.2.6.56.1
Multiply 13312 by 21.
V=π(-264448+27955221)
Step 17.2.6.56.2
Add -264448 and 279552.
V=π(1510421)
V=π(1510421)
Step 17.2.6.57
Combine π and 1510421.
V=π⋅1510421
Step 17.2.6.58
Move 15104 to the left of π.
V=15104π21
V=15104π21
V=15104π21
V=15104π21
Step 18
The result can be shown in multiple forms.
Exact Form:
V=15104π21
Decimal Form:
V=2259.55311618…
Step 19