Calculus Examples
y=x2y=x2 , [2,5][2,5]
Step 1
The Root Mean Square (RMS) of a function ff over a specified interval [a,b][a,b] is the square root of the arithmetic mean (average) of the squares of the original values.
frms=√1b-a⋅∫baf(x)2dxfrms=√1b−a⋅∫baf(x)2dx
Step 2
Substitute the actual values into the formula for the root mean square of a function.
frms=√15-2⋅(∫52(x2)2dx)frms=
⎷15−2⋅(∫52(x2)2dx)
Step 3
Step 3.1
Multiply the exponents in (x2)2(x2)2.
Step 3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
∫52x2⋅2dx∫52x2⋅2dx
Step 3.1.2
Multiply 22 by 22.
∫52x4dx∫52x4dx
∫52x4dx∫52x4dx
Step 3.2
By the Power Rule, the integral of x4x4 with respect to xx is 15x515x5.
15x5]5215x5]52
Step 3.3
Substitute and simplify.
Step 3.3.1
Evaluate 15x515x5 at 55 and at 22.
(15⋅55)-15⋅25(15⋅55)−15⋅25
Step 3.3.2
Simplify.
Step 3.3.2.1
Raise 55 to the power of 55.
15⋅3125-15⋅2515⋅3125−15⋅25
Step 3.3.2.2
Combine 1515 and 31253125.
31255-15⋅2531255−15⋅25
Step 3.3.2.3
Cancel the common factor of 31253125 and 55.
Step 3.3.2.3.1
Factor 55 out of 31253125.
5⋅6255-15⋅255⋅6255−15⋅25
Step 3.3.2.3.2
Cancel the common factors.
Step 3.3.2.3.2.1
Factor 55 out of 55.
5⋅6255(1)-15⋅255⋅6255(1)−15⋅25
Step 3.3.2.3.2.2
Cancel the common factor.
5⋅6255⋅1-15⋅25
Step 3.3.2.3.2.3
Rewrite the expression.
6251-15⋅25
Step 3.3.2.3.2.4
Divide 625 by 1.
625-15⋅25
625-15⋅25
625-15⋅25
Step 3.3.2.4
Raise 2 to the power of 5.
625-15⋅32
Step 3.3.2.5
Multiply 32 by -1.
625-32(15)
Step 3.3.2.6
Combine -32 and 15.
625+-325
Step 3.3.2.7
Move the negative in front of the fraction.
625-325
Step 3.3.2.8
To write 625 as a fraction with a common denominator, multiply by 55.
625⋅55-325
Step 3.3.2.9
Combine 625 and 55.
625⋅55-325
Step 3.3.2.10
Combine the numerators over the common denominator.
625⋅5-325
Step 3.3.2.11
Simplify the numerator.
Step 3.3.2.11.1
Multiply 625 by 5.
3125-325
Step 3.3.2.11.2
Subtract 32 from 3125.
30935
30935
30935
30935
30935
Step 4
Step 4.1
Multiply 15-2 by 30935.
frms=√3093(5-2)⋅5
Step 4.2
Subtract 2 from 5.
frms=√30933⋅5
Step 4.3
Reduce the expression 30933⋅5 by cancelling the common factors.
Step 4.3.1
Factor 3 out of 3093.
frms=√3⋅10313⋅5
Step 4.3.2
Factor 3 out of 3⋅5.
frms=√3⋅10313(5)
Step 4.3.3
Cancel the common factor.
frms=√3⋅10313⋅5
Step 4.3.4
Rewrite the expression.
frms=√10315
frms=√10315
Step 4.4
Rewrite √10315 as √1031√5.
frms=√1031√5
Step 4.5
Multiply √1031√5 by √5√5.
frms=√1031√5⋅√5√5
Step 4.6
Combine and simplify the denominator.
Step 4.6.1
Multiply √1031√5 by √5√5.
frms=√1031√5√5√5
Step 4.6.2
Raise √5 to the power of 1.
frms=√1031√5√5√5
Step 4.6.3
Raise √5 to the power of 1.
frms=√1031√5√5√5
Step 4.6.4
Use the power rule aman=am+n to combine exponents.
frms=√1031√5√51+1
Step 4.6.5
Add 1 and 1.
frms=√1031√5√52
Step 4.6.6
Rewrite √52 as 5.
Step 4.6.6.1
Use n√ax=axn to rewrite √5 as 512.
frms=√1031√5(512)2
Step 4.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
frms=√1031√5512⋅2
Step 4.6.6.3
Combine 12 and 2.
frms=√1031√5522
Step 4.6.6.4
Cancel the common factor of 2.
Step 4.6.6.4.1
Cancel the common factor.
frms=√1031√5522
Step 4.6.6.4.2
Rewrite the expression.
frms=√1031√55
frms=√1031√55
Step 4.6.6.5
Evaluate the exponent.
frms=√1031√55
frms=√1031√55
frms=√1031√55
Step 4.7
Simplify the numerator.
Step 4.7.1
Combine using the product rule for radicals.
frms=√1031⋅55
Step 4.7.2
Multiply 1031 by 5.
frms=√51555
frms=√51555
frms=√51555
Step 5
The result can be shown in multiple forms.
Exact Form:
frms=√51555
Decimal Form:
frms=14.35966573…
Step 6