Calculus Examples

y=x2y=x2 , [2,5][2,5]
Step 1
The Root Mean Square (RMS) of a function ff over a specified interval [a,b][a,b] is the square root of the arithmetic mean (average) of the squares of the original values.
frms=1b-abaf(x)2dxfrms=1babaf(x)2dx
Step 2
Substitute the actual values into the formula for the root mean square of a function.
frms=15-2(52(x2)2dx)frms= 152(52(x2)2dx)
Step 3
Evaluate the integral.
Tap for more steps...
Step 3.1
Multiply the exponents in (x2)2(x2)2.
Tap for more steps...
Step 3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
52x22dx52x22dx
Step 3.1.2
Multiply 22 by 22.
52x4dx52x4dx
52x4dx52x4dx
Step 3.2
By the Power Rule, the integral of x4x4 with respect to xx is 15x515x5.
15x5]5215x5]52
Step 3.3
Substitute and simplify.
Tap for more steps...
Step 3.3.1
Evaluate 15x515x5 at 55 and at 22.
(1555)-1525(1555)1525
Step 3.3.2
Simplify.
Tap for more steps...
Step 3.3.2.1
Raise 55 to the power of 55.
153125-15251531251525
Step 3.3.2.2
Combine 1515 and 31253125.
31255-1525312551525
Step 3.3.2.3
Cancel the common factor of 31253125 and 55.
Tap for more steps...
Step 3.3.2.3.1
Factor 55 out of 31253125.
56255-1525562551525
Step 3.3.2.3.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.3.2.1
Factor 55 out of 55.
56255(1)-152556255(1)1525
Step 3.3.2.3.2.2
Cancel the common factor.
562551-1525
Step 3.3.2.3.2.3
Rewrite the expression.
6251-1525
Step 3.3.2.3.2.4
Divide 625 by 1.
625-1525
625-1525
625-1525
Step 3.3.2.4
Raise 2 to the power of 5.
625-1532
Step 3.3.2.5
Multiply 32 by -1.
625-32(15)
Step 3.3.2.6
Combine -32 and 15.
625+-325
Step 3.3.2.7
Move the negative in front of the fraction.
625-325
Step 3.3.2.8
To write 625 as a fraction with a common denominator, multiply by 55.
62555-325
Step 3.3.2.9
Combine 625 and 55.
62555-325
Step 3.3.2.10
Combine the numerators over the common denominator.
6255-325
Step 3.3.2.11
Simplify the numerator.
Tap for more steps...
Step 3.3.2.11.1
Multiply 625 by 5.
3125-325
Step 3.3.2.11.2
Subtract 32 from 3125.
30935
30935
30935
30935
30935
Step 4
Simplify the root mean square formula.
Tap for more steps...
Step 4.1
Multiply 15-2 by 30935.
frms=3093(5-2)5
Step 4.2
Subtract 2 from 5.
frms=309335
Step 4.3
Reduce the expression 309335 by cancelling the common factors.
Tap for more steps...
Step 4.3.1
Factor 3 out of 3093.
frms=3103135
Step 4.3.2
Factor 3 out of 35.
frms=310313(5)
Step 4.3.3
Cancel the common factor.
frms=3103135
Step 4.3.4
Rewrite the expression.
frms=10315
frms=10315
Step 4.4
Rewrite 10315 as 10315.
frms=10315
Step 4.5
Multiply 10315 by 55.
frms=1031555
Step 4.6
Combine and simplify the denominator.
Tap for more steps...
Step 4.6.1
Multiply 10315 by 55.
frms=1031555
Step 4.6.2
Raise 5 to the power of 1.
frms=1031555
Step 4.6.3
Raise 5 to the power of 1.
frms=1031555
Step 4.6.4
Use the power rule aman=am+n to combine exponents.
frms=1031551+1
Step 4.6.5
Add 1 and 1.
frms=1031552
Step 4.6.6
Rewrite 52 as 5.
Tap for more steps...
Step 4.6.6.1
Use nax=axn to rewrite 5 as 512.
frms=10315(512)2
Step 4.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
frms=103155122
Step 4.6.6.3
Combine 12 and 2.
frms=10315522
Step 4.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.6.6.4.1
Cancel the common factor.
frms=10315522
Step 4.6.6.4.2
Rewrite the expression.
frms=103155
frms=103155
Step 4.6.6.5
Evaluate the exponent.
frms=103155
frms=103155
frms=103155
Step 4.7
Simplify the numerator.
Tap for more steps...
Step 4.7.1
Combine using the product rule for radicals.
frms=103155
Step 4.7.2
Multiply 1031 by 5.
frms=51555
frms=51555
frms=51555
Step 5
The result can be shown in multiple forms.
Exact Form:
frms=51555
Decimal Form:
frms=14.35966573
Step 6
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay