Calculus Examples
f(x)=8x-6f(x)=8x−6 , [0,3][0,3]
Step 1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)(−∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 2
f(x) is continuous on [0,3].
f(x) is continuous
Step 3
The average value of function f over the interval [a,b] is defined as A(x)=1b-a∫baf(x)dx.
A(x)=1b-a∫baf(x)dx
Step 4
Substitute the actual values into the formula for the average value of a function.
A(x)=13-0(∫308x-6dx)
Step 5
Split the single integral into multiple integrals.
A(x)=13-0(∫308xdx+∫30-6dx)
Step 6
Since 8 is constant with respect to x, move 8 out of the integral.
A(x)=13-0(8∫30xdx+∫30-6dx)
Step 7
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=13-0(8(12x2]30)+∫30-6dx)
Step 8
Combine 12 and x2.
A(x)=13-0(8(x22]30)+∫30-6dx)
Step 9
Apply the constant rule.
A(x)=13-0(8(x22]30)+-6x]30)
Step 10
Step 10.1
Evaluate x22 at 3 and at 0.
A(x)=13-0(8((322)-022)+-6x]30)
Step 10.2
Evaluate -6x at 3 and at 0.
A(x)=13-0(8(322-022)-6⋅3+6⋅0)
Step 10.3
Simplify.
Step 10.3.1
Raise 3 to the power of 2.
A(x)=13-0(8(92-022)-6⋅3+6⋅0)
Step 10.3.2
Raising 0 to any positive power yields 0.
A(x)=13-0(8(92-02)-6⋅3+6⋅0)
Step 10.3.3
Cancel the common factor of 0 and 2.
Step 10.3.3.1
Factor 2 out of 0.
A(x)=13-0(8(92-2(0)2)-6⋅3+6⋅0)
Step 10.3.3.2
Cancel the common factors.
Step 10.3.3.2.1
Factor 2 out of 2.
A(x)=13-0(8(92-2⋅02⋅1)-6⋅3+6⋅0)
Step 10.3.3.2.2
Cancel the common factor.
A(x)=13-0(8(92-2⋅02⋅1)-6⋅3+6⋅0)
Step 10.3.3.2.3
Rewrite the expression.
A(x)=13-0(8(92-01)-6⋅3+6⋅0)
Step 10.3.3.2.4
Divide 0 by 1.
A(x)=13-0(8(92-0)-6⋅3+6⋅0)
A(x)=13-0(8(92-0)-6⋅3+6⋅0)
A(x)=13-0(8(92-0)-6⋅3+6⋅0)
Step 10.3.4
Multiply -1 by 0.
A(x)=13-0(8(92+0)-6⋅3+6⋅0)
Step 10.3.5
Add 92 and 0.
A(x)=13-0(8(92)-6⋅3+6⋅0)
Step 10.3.6
Combine 8 and 92.
A(x)=13-0(8⋅92-6⋅3+6⋅0)
Step 10.3.7
Multiply 8 by 9.
A(x)=13-0(722-6⋅3+6⋅0)
Step 10.3.8
Cancel the common factor of 72 and 2.
Step 10.3.8.1
Factor 2 out of 72.
A(x)=13-0(2⋅362-6⋅3+6⋅0)
Step 10.3.8.2
Cancel the common factors.
Step 10.3.8.2.1
Factor 2 out of 2.
A(x)=13-0(2⋅362(1)-6⋅3+6⋅0)
Step 10.3.8.2.2
Cancel the common factor.
A(x)=13-0(2⋅362⋅1-6⋅3+6⋅0)
Step 10.3.8.2.3
Rewrite the expression.
A(x)=13-0(361-6⋅3+6⋅0)
Step 10.3.8.2.4
Divide 36 by 1.
A(x)=13-0(36-6⋅3+6⋅0)
A(x)=13-0(36-6⋅3+6⋅0)
A(x)=13-0(36-6⋅3+6⋅0)
Step 10.3.9
Multiply -6 by 3.
A(x)=13-0(36-18+6⋅0)
Step 10.3.10
Multiply 6 by 0.
A(x)=13-0(36-18+0)
Step 10.3.11
Add -18 and 0.
A(x)=13-0(36-18)
Step 10.3.12
Subtract 18 from 36.
A(x)=13-0(18)
A(x)=13-0(18)
A(x)=13-0(18)
Step 11
Step 11.1
Multiply -1 by 0.
A(x)=13+0⋅18
Step 11.2
Add 3 and 0.
A(x)=13⋅18
A(x)=13⋅18
Step 12
Step 12.1
Factor 3 out of 18.
A(x)=13⋅(3(6))
Step 12.2
Cancel the common factor.
A(x)=13⋅(3⋅6)
Step 12.3
Rewrite the expression.
A(x)=6
A(x)=6
Step 13