Calculus Examples
y=3x2+3x , (-5,1)
Step 1
Write y=3x2+3x as a function.
f(x)=3x2+3x
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 3
f(x) is continuous on [-5,1].
f(x) is continuous
Step 4
The average value of function f over the interval [a,b] is defined as A(x)=1b-a∫baf(x)dx.
A(x)=1b-a∫baf(x)dx
Step 5
Substitute the actual values into the formula for the average value of a function.
A(x)=11+5(∫1-53x2+3xdx)
Step 6
Split the single integral into multiple integrals.
A(x)=11+5(∫1-53x2dx+∫1-53xdx)
Step 7
Since 3 is constant with respect to x, move 3 out of the integral.
A(x)=11+5(3∫1-5x2dx+∫1-53xdx)
Step 8
By the Power Rule, the integral of x2 with respect to x is 13x3.
A(x)=11+5(3(13x3]1-5)+∫1-53xdx)
Step 9
Combine 13 and x3.
A(x)=11+5(3(x33]1-5)+∫1-53xdx)
Step 10
Since 3 is constant with respect to x, move 3 out of the integral.
A(x)=11+5(3(x33]1-5)+3∫1-5xdx)
Step 11
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=11+5(3(x33]1-5)+3(12x2]1-5))
Step 12
Step 12.1
Combine 12 and x2.
A(x)=11+5(3(x33]1-5)+3(x22]1-5))
Step 12.2
Substitute and simplify.
Step 12.2.1
Evaluate x33 at 1 and at -5.
A(x)=11+5(3((133)-(-5)33)+3(x22]1-5))
Step 12.2.2
Evaluate x22 at 1 and at -5.
A(x)=11+5(3(133-(-5)33)+3(122-(-5)22))
Step 12.2.3
Simplify.
Step 12.2.3.1
One to any power is one.
A(x)=11+5(3(13-(-5)33)+3(122-(-5)22))
Step 12.2.3.2
Raise -5 to the power of 3.
A(x)=11+5(3(13--1253)+3(122-(-5)22))
Step 12.2.3.3
Move the negative in front of the fraction.
A(x)=11+5(3(13+1253)+3(122-(-5)22))
Step 12.2.3.4
Multiply -1 by -1.
A(x)=11+5(3(13+1(1253))+3(122-(-5)22))
Step 12.2.3.5
Multiply 1253 by 1.
A(x)=11+5(3(13+1253)+3(122-(-5)22))
Step 12.2.3.6
Combine the numerators over the common denominator.
A(x)=11+5(3(1+1253)+3(122-(-5)22))
Step 12.2.3.7
Add 1 and 125.
A(x)=11+5(3(1263)+3(122-(-5)22))
Step 12.2.3.8
Cancel the common factor of 126 and 3.
Step 12.2.3.8.1
Factor 3 out of 126.
A(x)=11+5(3(3⋅423)+3(122-(-5)22))
Step 12.2.3.8.2
Cancel the common factors.
Step 12.2.3.8.2.1
Factor 3 out of 3.
A(x)=11+5(3(3⋅423(1))+3(122-(-5)22))
Step 12.2.3.8.2.2
Cancel the common factor.
A(x)=11+5(3(3⋅423⋅1)+3(122-(-5)22))
Step 12.2.3.8.2.3
Rewrite the expression.
A(x)=11+5(3(421)+3(122-(-5)22))
Step 12.2.3.8.2.4
Divide 42 by 1.
A(x)=11+5(3⋅42+3(122-(-5)22))
A(x)=11+5(3⋅42+3(122-(-5)22))
A(x)=11+5(3⋅42+3(122-(-5)22))
Step 12.2.3.9
Multiply 3 by 42.
A(x)=11+5(126+3(122-(-5)22))
Step 12.2.3.10
One to any power is one.
A(x)=11+5(126+3(12-(-5)22))
Step 12.2.3.11
Raise -5 to the power of 2.
A(x)=11+5(126+3(12-252))
Step 12.2.3.12
Combine the numerators over the common denominator.
A(x)=11+5(126+3(1-252))
Step 12.2.3.13
Subtract 25 from 1.
A(x)=11+5(126+3(-242))
Step 12.2.3.14
Cancel the common factor of -24 and 2.
Step 12.2.3.14.1
Factor 2 out of -24.
A(x)=11+5(126+3(2⋅-122))
Step 12.2.3.14.2
Cancel the common factors.
Step 12.2.3.14.2.1
Factor 2 out of 2.
A(x)=11+5(126+3(2⋅-122(1)))
Step 12.2.3.14.2.2
Cancel the common factor.
A(x)=11+5(126+3(2⋅-122⋅1))
Step 12.2.3.14.2.3
Rewrite the expression.
A(x)=11+5(126+3(-121))
Step 12.2.3.14.2.4
Divide -12 by 1.
A(x)=11+5(126+3⋅-12)
A(x)=11+5(126+3⋅-12)
A(x)=11+5(126+3⋅-12)
Step 12.2.3.15
Multiply 3 by -12.
A(x)=11+5(126-36)
Step 12.2.3.16
Subtract 36 from 126.
A(x)=11+5(90)
A(x)=11+5(90)
A(x)=11+5(90)
A(x)=11+5(90)
Step 13
Add 1 and 5.
A(x)=16⋅90
Step 14
Step 14.1
Factor 6 out of 90.
A(x)=16⋅(6(15))
Step 14.2
Cancel the common factor.
A(x)=16⋅(6⋅15)
Step 14.3
Rewrite the expression.
A(x)=15
A(x)=15
Step 15