Calculus Examples
y=3x3+x+3 , (5,7)
Step 1
Write y=3x3+x+3 as a function.
f(x)=3x3+x+3
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 3
f(x) is continuous on [5,7].
f(x) is continuous
Step 4
The average value of function f over the interval [a,b] is defined as A(x)=1b-a∫baf(x)dx.
A(x)=1b-a∫baf(x)dx
Step 5
Substitute the actual values into the formula for the average value of a function.
A(x)=17-5(∫753x3+x+3dx)
Step 6
Split the single integral into multiple integrals.
A(x)=17-5(∫753x3dx+∫75xdx+∫753dx)
Step 7
Since 3 is constant with respect to x, move 3 out of the integral.
A(x)=17-5(3∫75x3dx+∫75xdx+∫753dx)
Step 8
By the Power Rule, the integral of x3 with respect to x is 14x4.
A(x)=17-5(3(14x4]75)+∫75xdx+∫753dx)
Step 9
Combine 14 and x4.
A(x)=17-5(3(x44]75)+∫75xdx+∫753dx)
Step 10
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=17-5(3(x44]75)+12x2]75+∫753dx)
Step 11
Apply the constant rule.
A(x)=17-5(3(x44]75)+12x2]75+3x]75)
Step 12
Step 12.1
Combine 12x2]75 and 3x]75.
A(x)=17-5(3(x44]75)+12x2+3x]75)
Step 12.2
Substitute and simplify.
Step 12.2.1
Evaluate x44 at 7 and at 5.
A(x)=17-5(3((744)-544)+12x2+3x]75)
Step 12.2.2
Evaluate 12x2+3x at 7 and at 5.
A(x)=17-5(3((744)-544)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3
Simplify.
Step 12.2.3.1
Raise 7 to the power of 4.
A(x)=17-5(3(24014-544)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.2
Raise 5 to the power of 4.
A(x)=17-5(3(24014-6254)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.3
Combine the numerators over the common denominator.
A(x)=17-5(3(2401-6254)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.4
Subtract 625 from 2401.
A(x)=17-5(3(17764)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.5
Cancel the common factor of 1776 and 4.
Step 12.2.3.5.1
Factor 4 out of 1776.
A(x)=17-5(3(4⋅4444)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.5.2
Cancel the common factors.
Step 12.2.3.5.2.1
Factor 4 out of 4.
A(x)=17-5(3(4⋅4444(1))+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.5.2.2
Cancel the common factor.
A(x)=17-5(3(4⋅4444⋅1)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.5.2.3
Rewrite the expression.
A(x)=17-5(3(4441)+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.5.2.4
Divide 444 by 1.
A(x)=17-5(3⋅444+12⋅72+3⋅7-(12⋅52+3⋅5))
A(x)=17-5(3⋅444+12⋅72+3⋅7-(12⋅52+3⋅5))
A(x)=17-5(3⋅444+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.6
Multiply 3 by 444.
A(x)=17-5(1332+12⋅72+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.7
Raise 7 to the power of 2.
A(x)=17-5(1332+12⋅49+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.8
Combine 12 and 49.
A(x)=17-5(1332+492+3⋅7-(12⋅52+3⋅5))
Step 12.2.3.9
Multiply 3 by 7.
A(x)=17-5(1332+492+21-(12⋅52+3⋅5))
Step 12.2.3.10
To write 21 as a fraction with a common denominator, multiply by 22.
A(x)=17-5(1332+492+21⋅22-(12⋅52+3⋅5))
Step 12.2.3.11
Combine 21 and 22.
A(x)=17-5(1332+492+21⋅22-(12⋅52+3⋅5))
Step 12.2.3.12
Combine the numerators over the common denominator.
A(x)=17-5(1332+49+21⋅22-(12⋅52+3⋅5))
Step 12.2.3.13
Simplify the numerator.
Step 12.2.3.13.1
Multiply 21 by 2.
A(x)=17-5(1332+49+422-(12⋅52+3⋅5))
Step 12.2.3.13.2
Add 49 and 42.
A(x)=17-5(1332+912-(12⋅52+3⋅5))
A(x)=17-5(1332+912-(12⋅52+3⋅5))
Step 12.2.3.14
Raise 5 to the power of 2.
A(x)=17-5(1332+912-(12⋅25+3⋅5))
Step 12.2.3.15
Combine 12 and 25.
A(x)=17-5(1332+912-(252+3⋅5))
Step 12.2.3.16
Multiply 3 by 5.
A(x)=17-5(1332+912-(252+15))
Step 12.2.3.17
To write 15 as a fraction with a common denominator, multiply by 22.
A(x)=17-5(1332+912-(252+15⋅22))
Step 12.2.3.18
Combine 15 and 22.
A(x)=17-5(1332+912-(252+15⋅22))
Step 12.2.3.19
Combine the numerators over the common denominator.
A(x)=17-5(1332+912-25+15⋅22)
Step 12.2.3.20
Simplify the numerator.
Step 12.2.3.20.1
Multiply 15 by 2.
A(x)=17-5(1332+912-25+302)
Step 12.2.3.20.2
Add 25 and 30.
A(x)=17-5(1332+912-552)
A(x)=17-5(1332+912-552)
Step 12.2.3.21
Combine the numerators over the common denominator.
A(x)=17-5(1332+91-552)
Step 12.2.3.22
Subtract 55 from 91.
A(x)=17-5(1332+362)
Step 12.2.3.23
Cancel the common factor of 36 and 2.
Step 12.2.3.23.1
Factor 2 out of 36.
A(x)=17-5(1332+2⋅182)
Step 12.2.3.23.2
Cancel the common factors.
Step 12.2.3.23.2.1
Factor 2 out of 2.
A(x)=17-5(1332+2⋅182(1))
Step 12.2.3.23.2.2
Cancel the common factor.
A(x)=17-5(1332+2⋅182⋅1)
Step 12.2.3.23.2.3
Rewrite the expression.
A(x)=17-5(1332+181)
Step 12.2.3.23.2.4
Divide 18 by 1.
A(x)=17-5(1332+18)
A(x)=17-5(1332+18)
A(x)=17-5(1332+18)
Step 12.2.3.24
Add 1332 and 18.
A(x)=17-5(1350)
A(x)=17-5(1350)
A(x)=17-5(1350)
A(x)=17-5(1350)
Step 13
Subtract 5 from 7.
A(x)=12⋅1350
Step 14
Step 14.1
Factor 2 out of 1350.
A(x)=12⋅(2(675))
Step 14.2
Cancel the common factor.
A(x)=12⋅(2⋅675)
Step 14.3
Rewrite the expression.
A(x)=675
A(x)=675
Step 15