Calculus Examples
f(x)=x2+2x-3 , [0,6]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate.
Step 1.1.1.1
By the Sum Rule, the derivative of x2+2x-3 with respect to x is ddx[x2]+ddx[2x]+ddx[-3].
ddx[x2]+ddx[2x]+ddx[-3]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2x+ddx[2x]+ddx[-3]
2x+ddx[2x]+ddx[-3]
Step 1.1.2
Evaluate ddx[2x].
Step 1.1.2.1
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2x+2ddx[x]+ddx[-3]
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2x+2⋅1+ddx[-3]
Step 1.1.2.3
Multiply 2 by 1.
2x+2+ddx[-3]
2x+2+ddx[-3]
Step 1.1.3
Differentiate using the Constant Rule.
Step 1.1.3.1
Since -3 is constant with respect to x, the derivative of -3 with respect to x is 0.
2x+2+0
Step 1.1.3.2
Add 2x+2 and 0.
f′(x)=2x+2
f′(x)=2x+2
f′(x)=2x+2
Step 1.2
The first derivative of f(x) with respect to x is 2x+2.
2x+2
2x+2
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 3
f′(x) is continuous on [0,6].
f′(x) is continuous
Step 4
The average value of function f′ over the interval [a,b] is defined as A(x)=1b-a∫baf(x)dx.
A(x)=1b-a∫baf(x)dx
Step 5
Substitute the actual values into the formula for the average value of a function.
A(x)=16-0(∫602x+2dx)
Step 6
Split the single integral into multiple integrals.
A(x)=16-0(∫602xdx+∫602dx)
Step 7
Since 2 is constant with respect to x, move 2 out of the integral.
A(x)=16-0(2∫60xdx+∫602dx)
Step 8
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=16-0(2(12x2]60)+∫602dx)
Step 9
Combine 12 and x2.
A(x)=16-0(2(x22]60)+∫602dx)
Step 10
Apply the constant rule.
A(x)=16-0(2(x22]60)+2x]60)
Step 11
Step 11.1
Evaluate x22 at 6 and at 0.
A(x)=16-0(2((622)-022)+2x]60)
Step 11.2
Evaluate 2x at 6 and at 0.
A(x)=16-0(2(622-022)+2⋅6-2⋅0)
Step 11.3
Simplify.
Step 11.3.1
Raise 6 to the power of 2.
A(x)=16-0(2(362-022)+2⋅6-2⋅0)
Step 11.3.2
Cancel the common factor of 36 and 2.
Step 11.3.2.1
Factor 2 out of 36.
A(x)=16-0(2(2⋅182-022)+2⋅6-2⋅0)
Step 11.3.2.2
Cancel the common factors.
Step 11.3.2.2.1
Factor 2 out of 2.
A(x)=16-0(2(2⋅182(1)-022)+2⋅6-2⋅0)
Step 11.3.2.2.2
Cancel the common factor.
A(x)=16-0(2(2⋅182⋅1-022)+2⋅6-2⋅0)
Step 11.3.2.2.3
Rewrite the expression.
A(x)=16-0(2(181-022)+2⋅6-2⋅0)
Step 11.3.2.2.4
Divide 18 by 1.
A(x)=16-0(2(18-022)+2⋅6-2⋅0)
A(x)=16-0(2(18-022)+2⋅6-2⋅0)
A(x)=16-0(2(18-022)+2⋅6-2⋅0)
Step 11.3.3
Raising 0 to any positive power yields 0.
A(x)=16-0(2(18-02)+2⋅6-2⋅0)
Step 11.3.4
Cancel the common factor of 0 and 2.
Step 11.3.4.1
Factor 2 out of 0.
A(x)=16-0(2(18-2(0)2)+2⋅6-2⋅0)
Step 11.3.4.2
Cancel the common factors.
Step 11.3.4.2.1
Factor 2 out of 2.
A(x)=16-0(2(18-2⋅02⋅1)+2⋅6-2⋅0)
Step 11.3.4.2.2
Cancel the common factor.
A(x)=16-0(2(18-2⋅02⋅1)+2⋅6-2⋅0)
Step 11.3.4.2.3
Rewrite the expression.
A(x)=16-0(2(18-01)+2⋅6-2⋅0)
Step 11.3.4.2.4
Divide 0 by 1.
A(x)=16-0(2(18-0)+2⋅6-2⋅0)
A(x)=16-0(2(18-0)+2⋅6-2⋅0)
A(x)=16-0(2(18-0)+2⋅6-2⋅0)
Step 11.3.5
Multiply -1 by 0.
A(x)=16-0(2(18+0)+2⋅6-2⋅0)
Step 11.3.6
Add 18 and 0.
A(x)=16-0(2⋅18+2⋅6-2⋅0)
Step 11.3.7
Multiply 2 by 18.
A(x)=16-0(36+2⋅6-2⋅0)
Step 11.3.8
Multiply 2 by 6.
A(x)=16-0(36+12-2⋅0)
Step 11.3.9
Multiply -2 by 0.
A(x)=16-0(36+12+0)
Step 11.3.10
Add 12 and 0.
A(x)=16-0(36+12)
Step 11.3.11
Add 36 and 12.
A(x)=16-0(48)
A(x)=16-0(48)
A(x)=16-0(48)
Step 12
Step 12.1
Multiply -1 by 0.
A(x)=16+0⋅48
Step 12.2
Add 6 and 0.
A(x)=16⋅48
A(x)=16⋅48
Step 13
Step 13.1
Factor 6 out of 48.
A(x)=16⋅(6(8))
Step 13.2
Cancel the common factor.
A(x)=16⋅(6⋅8)
Step 13.3
Rewrite the expression.
A(x)=8
A(x)=8
Step 14