Calculus Examples

Find the Average Value of the Derivative
f(x)=x2+2x-3 , [0,6]
Step 1
Find the derivative of f(x)=x2+2x-3.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of x2+2x-3 with respect to x is ddx[x2]+ddx[2x]+ddx[-3].
ddx[x2]+ddx[2x]+ddx[-3]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2x+ddx[2x]+ddx[-3]
2x+ddx[2x]+ddx[-3]
Step 1.1.2
Evaluate ddx[2x].
Tap for more steps...
Step 1.1.2.1
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2x+2ddx[x]+ddx[-3]
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2x+21+ddx[-3]
Step 1.1.2.3
Multiply 2 by 1.
2x+2+ddx[-3]
2x+2+ddx[-3]
Step 1.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.3.1
Since -3 is constant with respect to x, the derivative of -3 with respect to x is 0.
2x+2+0
Step 1.1.3.2
Add 2x+2 and 0.
f(x)=2x+2
f(x)=2x+2
f(x)=2x+2
Step 1.2
The first derivative of f(x) with respect to x is 2x+2.
2x+2
2x+2
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-,)
Set-Builder Notation:
{x|x}
Step 3
f(x) is continuous on [0,6].
f(x) is continuous
Step 4
The average value of function f over the interval [a,b] is defined as A(x)=1b-abaf(x)dx.
A(x)=1b-abaf(x)dx
Step 5
Substitute the actual values into the formula for the average value of a function.
A(x)=16-0(602x+2dx)
Step 6
Split the single integral into multiple integrals.
A(x)=16-0(602xdx+602dx)
Step 7
Since 2 is constant with respect to x, move 2 out of the integral.
A(x)=16-0(260xdx+602dx)
Step 8
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=16-0(2(12x2]60)+602dx)
Step 9
Combine 12 and x2.
A(x)=16-0(2(x22]60)+602dx)
Step 10
Apply the constant rule.
A(x)=16-0(2(x22]60)+2x]60)
Step 11
Substitute and simplify.
Tap for more steps...
Step 11.1
Evaluate x22 at 6 and at 0.
A(x)=16-0(2((622)-022)+2x]60)
Step 11.2
Evaluate 2x at 6 and at 0.
A(x)=16-0(2(622-022)+26-20)
Step 11.3
Simplify.
Tap for more steps...
Step 11.3.1
Raise 6 to the power of 2.
A(x)=16-0(2(362-022)+26-20)
Step 11.3.2
Cancel the common factor of 36 and 2.
Tap for more steps...
Step 11.3.2.1
Factor 2 out of 36.
A(x)=16-0(2(2182-022)+26-20)
Step 11.3.2.2
Cancel the common factors.
Tap for more steps...
Step 11.3.2.2.1
Factor 2 out of 2.
A(x)=16-0(2(2182(1)-022)+26-20)
Step 11.3.2.2.2
Cancel the common factor.
A(x)=16-0(2(21821-022)+26-20)
Step 11.3.2.2.3
Rewrite the expression.
A(x)=16-0(2(181-022)+26-20)
Step 11.3.2.2.4
Divide 18 by 1.
A(x)=16-0(2(18-022)+26-20)
A(x)=16-0(2(18-022)+26-20)
A(x)=16-0(2(18-022)+26-20)
Step 11.3.3
Raising 0 to any positive power yields 0.
A(x)=16-0(2(18-02)+26-20)
Step 11.3.4
Cancel the common factor of 0 and 2.
Tap for more steps...
Step 11.3.4.1
Factor 2 out of 0.
A(x)=16-0(2(18-2(0)2)+26-20)
Step 11.3.4.2
Cancel the common factors.
Tap for more steps...
Step 11.3.4.2.1
Factor 2 out of 2.
A(x)=16-0(2(18-2021)+26-20)
Step 11.3.4.2.2
Cancel the common factor.
A(x)=16-0(2(18-2021)+26-20)
Step 11.3.4.2.3
Rewrite the expression.
A(x)=16-0(2(18-01)+26-20)
Step 11.3.4.2.4
Divide 0 by 1.
A(x)=16-0(2(18-0)+26-20)
A(x)=16-0(2(18-0)+26-20)
A(x)=16-0(2(18-0)+26-20)
Step 11.3.5
Multiply -1 by 0.
A(x)=16-0(2(18+0)+26-20)
Step 11.3.6
Add 18 and 0.
A(x)=16-0(218+26-20)
Step 11.3.7
Multiply 2 by 18.
A(x)=16-0(36+26-20)
Step 11.3.8
Multiply 2 by 6.
A(x)=16-0(36+12-20)
Step 11.3.9
Multiply -2 by 0.
A(x)=16-0(36+12+0)
Step 11.3.10
Add 12 and 0.
A(x)=16-0(36+12)
Step 11.3.11
Add 36 and 12.
A(x)=16-0(48)
A(x)=16-0(48)
A(x)=16-0(48)
Step 12
Simplify the denominator.
Tap for more steps...
Step 12.1
Multiply -1 by 0.
A(x)=16+048
Step 12.2
Add 6 and 0.
A(x)=1648
A(x)=1648
Step 13
Cancel the common factor of 6.
Tap for more steps...
Step 13.1
Factor 6 out of 48.
A(x)=16(6(8))
Step 13.2
Cancel the common factor.
A(x)=16(68)
Step 13.3
Rewrite the expression.
A(x)=8
A(x)=8
Step 14
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay