Calculus Examples

y=x2-5x , y=3x
Step 1
Solve by substitution to find the intersection between the curves.
Tap for more steps...
Step 1.1
Eliminate the equal sides of each equation and combine.
x2-5x=3x
Step 1.2
Solve x2-5x=3x for x.
Tap for more steps...
Step 1.2.1
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 1.2.1.1
Subtract 3x from both sides of the equation.
x2-5x-3x=0
Step 1.2.1.2
Subtract 3x from -5x.
x2-8x=0
x2-8x=0
Step 1.2.2
Factor x out of x2-8x.
Tap for more steps...
Step 1.2.2.1
Factor x out of x2.
xx-8x=0
Step 1.2.2.2
Factor x out of -8x.
xx+x-8=0
Step 1.2.2.3
Factor x out of xx+x-8.
x(x-8)=0
x(x-8)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-8=0+y=3x
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set x-8 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.5.1
Set x-8 equal to 0.
x-8=0
Step 1.2.5.2
Add 8 to both sides of the equation.
x=8
x=8
Step 1.2.6
The final solution is all the values that make x(x-8)=0 true.
x=0,8
x=0,8
Step 1.3
Evaluate y when x=0.
Tap for more steps...
Step 1.3.1
Substitute 0 for x.
y=3(0)
Step 1.3.2
Multiply 3 by 0.
y=0
y=0
Step 1.4
Evaluate y when x=8.
Tap for more steps...
Step 1.4.1
Substitute 8 for x.
y=3(8)
Step 1.4.2
Multiply 3 by 8.
y=24
y=24
Step 1.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(0,0)
(8,24)
(0,0)
(8,24)
Step 2
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=803xdx-80x2-5xdx
Step 3
Integrate to find the area between 0 and 8.
Tap for more steps...
Step 3.1
Combine the integrals into a single integral.
803x-(x2-5x)dx
Step 3.2
Simplify each term.
Tap for more steps...
Step 3.2.1
Apply the distributive property.
3x-x2-(-5x)
Step 3.2.2
Multiply -5 by -1.
3x-x2+5x
803x-x2+5xdx
Step 3.3
Add 3x and 5x.
80-x2+8xdx
Step 3.4
Split the single integral into multiple integrals.
80-x2dx+808xdx
Step 3.5
Since -1 is constant with respect to x, move -1 out of the integral.
-80x2dx+808xdx
Step 3.6
By the Power Rule, the integral of x2 with respect to x is 13x3.
-(13x3]80)+808xdx
Step 3.7
Combine 13 and x3.
-(x33]80)+808xdx
Step 3.8
Since 8 is constant with respect to x, move 8 out of the integral.
-(x33]80)+880xdx
Step 3.9
By the Power Rule, the integral of x with respect to x is 12x2.
-(x33]80)+8(12x2]80)
Step 3.10
Simplify the answer.
Tap for more steps...
Step 3.10.1
Combine 12 and x2.
-(x33]80)+8(x22]80)
Step 3.10.2
Substitute and simplify.
Tap for more steps...
Step 3.10.2.1
Evaluate x33 at 8 and at 0.
-((833)-033)+8(x22]80)
Step 3.10.2.2
Evaluate x22 at 8 and at 0.
-(833-033)+8(822-022)
Step 3.10.2.3
Simplify.
Tap for more steps...
Step 3.10.2.3.1
Raise 8 to the power of 3.
-(5123-033)+8(822-022)
Step 3.10.2.3.2
Raising 0 to any positive power yields 0.
-(5123-03)+8(822-022)
Step 3.10.2.3.3
Cancel the common factor of 0 and 3.
Tap for more steps...
Step 3.10.2.3.3.1
Factor 3 out of 0.
-(5123-3(0)3)+8(822-022)
Step 3.10.2.3.3.2
Cancel the common factors.
Tap for more steps...
Step 3.10.2.3.3.2.1
Factor 3 out of 3.
-(5123-3031)+8(822-022)
Step 3.10.2.3.3.2.2
Cancel the common factor.
-(5123-3031)+8(822-022)
Step 3.10.2.3.3.2.3
Rewrite the expression.
-(5123-01)+8(822-022)
Step 3.10.2.3.3.2.4
Divide 0 by 1.
-(5123-0)+8(822-022)
-(5123-0)+8(822-022)
-(5123-0)+8(822-022)
Step 3.10.2.3.4
Multiply -1 by 0.
-(5123+0)+8(822-022)
Step 3.10.2.3.5
Add 5123 and 0.
-5123+8(822-022)
Step 3.10.2.3.6
Raise 8 to the power of 2.
-5123+8(642-022)
Step 3.10.2.3.7
Cancel the common factor of 64 and 2.
Tap for more steps...
Step 3.10.2.3.7.1
Factor 2 out of 64.
-5123+8(2322-022)
Step 3.10.2.3.7.2
Cancel the common factors.
Tap for more steps...
Step 3.10.2.3.7.2.1
Factor 2 out of 2.
-5123+8(2322(1)-022)
Step 3.10.2.3.7.2.2
Cancel the common factor.
-5123+8(23221-022)
Step 3.10.2.3.7.2.3
Rewrite the expression.
-5123+8(321-022)
Step 3.10.2.3.7.2.4
Divide 32 by 1.
-5123+8(32-022)
-5123+8(32-022)
-5123+8(32-022)
Step 3.10.2.3.8
Raising 0 to any positive power yields 0.
-5123+8(32-02)
Step 3.10.2.3.9
Cancel the common factor of 0 and 2.
Tap for more steps...
Step 3.10.2.3.9.1
Factor 2 out of 0.
-5123+8(32-2(0)2)
Step 3.10.2.3.9.2
Cancel the common factors.
Tap for more steps...
Step 3.10.2.3.9.2.1
Factor 2 out of 2.
-5123+8(32-2021)
Step 3.10.2.3.9.2.2
Cancel the common factor.
-5123+8(32-2021)
Step 3.10.2.3.9.2.3
Rewrite the expression.
-5123+8(32-01)
Step 3.10.2.3.9.2.4
Divide 0 by 1.
-5123+8(32-0)
-5123+8(32-0)
-5123+8(32-0)
Step 3.10.2.3.10
Multiply -1 by 0.
-5123+8(32+0)
Step 3.10.2.3.11
Add 32 and 0.
-5123+832
Step 3.10.2.3.12
Multiply 8 by 32.
-5123+256
Step 3.10.2.3.13
To write 256 as a fraction with a common denominator, multiply by 33.
-5123+25633
Step 3.10.2.3.14
Combine 256 and 33.
-5123+25633
Step 3.10.2.3.15
Combine the numerators over the common denominator.
-512+25633
Step 3.10.2.3.16
Simplify the numerator.
Tap for more steps...
Step 3.10.2.3.16.1
Multiply 256 by 3.
-512+7683
Step 3.10.2.3.16.2
Add -512 and 768.
2563
2563
2563
2563
2563
2563
Step 4
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay