Calculus Examples
y=x2-5x , y=3x
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
x2-5x=3x
Step 1.2
Solve x2-5x=3x for x.
Step 1.2.1
Move all terms containing x to the left side of the equation.
Step 1.2.1.1
Subtract 3x from both sides of the equation.
x2-5x-3x=0
Step 1.2.1.2
Subtract 3x from -5x.
x2-8x=0
x2-8x=0
Step 1.2.2
Factor x out of x2-8x.
Step 1.2.2.1
Factor x out of x2.
x⋅x-8x=0
Step 1.2.2.2
Factor x out of -8x.
x⋅x+x⋅-8=0
Step 1.2.2.3
Factor x out of x⋅x+x⋅-8.
x(x-8)=0
x(x-8)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-8=0+y=3x
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set x-8 equal to 0 and solve for x.
Step 1.2.5.1
Set x-8 equal to 0.
x-8=0
Step 1.2.5.2
Add 8 to both sides of the equation.
x=8
x=8
Step 1.2.6
The final solution is all the values that make x(x-8)=0 true.
x=0,8
x=0,8
Step 1.3
Evaluate y when x=0.
Step 1.3.1
Substitute 0 for x.
y=3(0)
Step 1.3.2
Multiply 3 by 0.
y=0
y=0
Step 1.4
Evaluate y when x=8.
Step 1.4.1
Substitute 8 for x.
y=3(8)
Step 1.4.2
Multiply 3 by 8.
y=24
y=24
Step 1.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(0,0)
(8,24)
(0,0)
(8,24)
Step 2
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=∫803xdx-∫80x2-5xdx
Step 3
Step 3.1
Combine the integrals into a single integral.
∫803x-(x2-5x)dx
Step 3.2
Simplify each term.
Step 3.2.1
Apply the distributive property.
3x-x2-(-5x)
Step 3.2.2
Multiply -5 by -1.
3x-x2+5x
∫803x-x2+5xdx
Step 3.3
Add 3x and 5x.
∫80-x2+8xdx
Step 3.4
Split the single integral into multiple integrals.
∫80-x2dx+∫808xdx
Step 3.5
Since -1 is constant with respect to x, move -1 out of the integral.
-∫80x2dx+∫808xdx
Step 3.6
By the Power Rule, the integral of x2 with respect to x is 13x3.
-(13x3]80)+∫808xdx
Step 3.7
Combine 13 and x3.
-(x33]80)+∫808xdx
Step 3.8
Since 8 is constant with respect to x, move 8 out of the integral.
-(x33]80)+8∫80xdx
Step 3.9
By the Power Rule, the integral of x with respect to x is 12x2.
-(x33]80)+8(12x2]80)
Step 3.10
Simplify the answer.
Step 3.10.1
Combine 12 and x2.
-(x33]80)+8(x22]80)
Step 3.10.2
Substitute and simplify.
Step 3.10.2.1
Evaluate x33 at 8 and at 0.
-((833)-033)+8(x22]80)
Step 3.10.2.2
Evaluate x22 at 8 and at 0.
-(833-033)+8(822-022)
Step 3.10.2.3
Simplify.
Step 3.10.2.3.1
Raise 8 to the power of 3.
-(5123-033)+8(822-022)
Step 3.10.2.3.2
Raising 0 to any positive power yields 0.
-(5123-03)+8(822-022)
Step 3.10.2.3.3
Cancel the common factor of 0 and 3.
Step 3.10.2.3.3.1
Factor 3 out of 0.
-(5123-3(0)3)+8(822-022)
Step 3.10.2.3.3.2
Cancel the common factors.
Step 3.10.2.3.3.2.1
Factor 3 out of 3.
-(5123-3⋅03⋅1)+8(822-022)
Step 3.10.2.3.3.2.2
Cancel the common factor.
-(5123-3⋅03⋅1)+8(822-022)
Step 3.10.2.3.3.2.3
Rewrite the expression.
-(5123-01)+8(822-022)
Step 3.10.2.3.3.2.4
Divide 0 by 1.
-(5123-0)+8(822-022)
-(5123-0)+8(822-022)
-(5123-0)+8(822-022)
Step 3.10.2.3.4
Multiply -1 by 0.
-(5123+0)+8(822-022)
Step 3.10.2.3.5
Add 5123 and 0.
-5123+8(822-022)
Step 3.10.2.3.6
Raise 8 to the power of 2.
-5123+8(642-022)
Step 3.10.2.3.7
Cancel the common factor of 64 and 2.
Step 3.10.2.3.7.1
Factor 2 out of 64.
-5123+8(2⋅322-022)
Step 3.10.2.3.7.2
Cancel the common factors.
Step 3.10.2.3.7.2.1
Factor 2 out of 2.
-5123+8(2⋅322(1)-022)
Step 3.10.2.3.7.2.2
Cancel the common factor.
-5123+8(2⋅322⋅1-022)
Step 3.10.2.3.7.2.3
Rewrite the expression.
-5123+8(321-022)
Step 3.10.2.3.7.2.4
Divide 32 by 1.
-5123+8(32-022)
-5123+8(32-022)
-5123+8(32-022)
Step 3.10.2.3.8
Raising 0 to any positive power yields 0.
-5123+8(32-02)
Step 3.10.2.3.9
Cancel the common factor of 0 and 2.
Step 3.10.2.3.9.1
Factor 2 out of 0.
-5123+8(32-2(0)2)
Step 3.10.2.3.9.2
Cancel the common factors.
Step 3.10.2.3.9.2.1
Factor 2 out of 2.
-5123+8(32-2⋅02⋅1)
Step 3.10.2.3.9.2.2
Cancel the common factor.
-5123+8(32-2⋅02⋅1)
Step 3.10.2.3.9.2.3
Rewrite the expression.
-5123+8(32-01)
Step 3.10.2.3.9.2.4
Divide 0 by 1.
-5123+8(32-0)
-5123+8(32-0)
-5123+8(32-0)
Step 3.10.2.3.10
Multiply -1 by 0.
-5123+8(32+0)
Step 3.10.2.3.11
Add 32 and 0.
-5123+8⋅32
Step 3.10.2.3.12
Multiply 8 by 32.
-5123+256
Step 3.10.2.3.13
To write 256 as a fraction with a common denominator, multiply by 33.
-5123+256⋅33
Step 3.10.2.3.14
Combine 256 and 33.
-5123+256⋅33
Step 3.10.2.3.15
Combine the numerators over the common denominator.
-512+256⋅33
Step 3.10.2.3.16
Simplify the numerator.
Step 3.10.2.3.16.1
Multiply 256 by 3.
-512+7683
Step 3.10.2.3.16.2
Add -512 and 768.
2563
2563
2563
2563
2563
2563
Step 4