Calculus Examples
y=3x-x2y=3x−x2 , y=x2y=x2
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
3x-x2=x23x−x2=x2
Step 1.2
Solve 3x-x2=x23x−x2=x2 for xx.
Step 1.2.1
Move all terms containing xx to the left side of the equation.
Step 1.2.1.1
Subtract x2x2 from both sides of the equation.
3x-x2-x2=03x−x2−x2=0
Step 1.2.1.2
Subtract x2x2 from -x2−x2.
3x-2x2=03x−2x2=0
3x-2x2=03x−2x2=0
Step 1.2.2
Factor the left side of the equation.
Step 1.2.2.1
Let u=xu=x. Substitute uu for all occurrences of xx.
3u-2u2=03u−2u2=0
Step 1.2.2.2
Factor uu out of 3u-2u23u−2u2.
Step 1.2.2.2.1
Factor uu out of 3u3u.
u⋅3-2u2=0u⋅3−2u2=0
Step 1.2.2.2.2
Factor uu out of -2u2−2u2.
u⋅3+u(-2u)=0u⋅3+u(−2u)=0
Step 1.2.2.2.3
Factor uu out of u⋅3+u(-2u)u⋅3+u(−2u).
u(3-2u)=0u(3−2u)=0
u(3-2u)=0u(3−2u)=0
Step 1.2.2.3
Replace all occurrences of uu with xx.
x(3-2x)=0x(3−2x)=0
x(3-2x)=0x(3−2x)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x=0x=0
3-2x=0+y=x23−2x=0+y=x2
Step 1.2.4
Set xx equal to 00.
x=0x=0
Step 1.2.5
Set 3-2x3−2x equal to 00 and solve for xx.
Step 1.2.5.1
Set 3-2x3−2x equal to 00.
3-2x=03−2x=0
Step 1.2.5.2
Solve 3-2x=03−2x=0 for xx.
Step 1.2.5.2.1
Subtract 33 from both sides of the equation.
-2x=-3−2x=−3
Step 1.2.5.2.2
Divide each term in -2x=-3−2x=−3 by -2−2 and simplify.
Step 1.2.5.2.2.1
Divide each term in -2x=-3−2x=−3 by -2−2.
-2x-2=-3-2−2x−2=−3−2
Step 1.2.5.2.2.2
Simplify the left side.
Step 1.2.5.2.2.2.1
Cancel the common factor of -2−2.
Step 1.2.5.2.2.2.1.1
Cancel the common factor.
-2x-2=-3-2
Step 1.2.5.2.2.2.1.2
Divide x by 1.
x=-3-2
x=-3-2
x=-3-2
Step 1.2.5.2.2.3
Simplify the right side.
Step 1.2.5.2.2.3.1
Dividing two negative values results in a positive value.
x=32
x=32
x=32
x=32
x=32
Step 1.2.6
The final solution is all the values that make x(3-2x)=0 true.
x=0,32
x=0,32
Step 1.3
Evaluate y when x=0.
Step 1.3.1
Substitute 0 for x.
y=(0)2
Step 1.3.2
Substitute 0 for x in y=(0)2 and solve for y.
Step 1.3.2.1
Remove parentheses.
y=02
Step 1.3.2.2
Raising 0 to any positive power yields 0.
y=0
y=0
y=0
Step 1.4
Evaluate y when x=32.
Step 1.4.1
Substitute 32 for x.
y=(32)2
Step 1.4.2
Simplify (32)2.
Step 1.4.2.1
Apply the product rule to 32.
y=3222
Step 1.4.2.2
Raise 3 to the power of 2.
y=922
Step 1.4.2.3
Raise 2 to the power of 2.
y=94
y=94
y=94
Step 1.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(0,0)
(32,94)
(0,0)
(32,94)
Step 2
Reorder 3x and -x2.
y=-x2+3x
Step 3
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=∫320-x2+3xdx-∫320x2dx
Step 4
Step 4.1
Combine the integrals into a single integral.
∫320-x2+3x-(x2)dx
Step 4.2
Subtract x2 from -x2.
∫320-2x2+3xdx
Step 4.3
Split the single integral into multiple integrals.
∫320-2x2dx+∫3203xdx
Step 4.4
Since -2 is constant with respect to x, move -2 out of the integral.
-2∫320x2dx+∫3203xdx
Step 4.5
By the Power Rule, the integral of x2 with respect to x is 13x3.
-2(13x3]320)+∫3203xdx
Step 4.6
Combine 13 and x3.
-2(x33]320)+∫3203xdx
Step 4.7
Since 3 is constant with respect to x, move 3 out of the integral.
-2(x33]320)+3∫320xdx
Step 4.8
By the Power Rule, the integral of x with respect to x is 12x2.
-2(x33]320)+3(12x2]320)
Step 4.9
Simplify the answer.
Step 4.9.1
Combine 12 and x2.
-2(x33]320)+3(x22]320)
Step 4.9.2
Substitute and simplify.
Step 4.9.2.1
Evaluate x33 at 32 and at 0.
-2(((32)33)-033)+3(x22]320)
Step 4.9.2.2
Evaluate x22 at 32 and at 0.
-2((32)33-033)+3((32)22-022)
Step 4.9.2.3
Simplify.
Step 4.9.2.3.1
Raising 0 to any positive power yields 0.
-2((32)33-03)+3((32)22-022)
Step 4.9.2.3.2
Cancel the common factor of 0 and 3.
Step 4.9.2.3.2.1
Factor 3 out of 0.
-2((32)33-3(0)3)+3((32)22-022)
Step 4.9.2.3.2.2
Cancel the common factors.
Step 4.9.2.3.2.2.1
Factor 3 out of 3.
-2((32)33-3⋅03⋅1)+3((32)22-022)
Step 4.9.2.3.2.2.2
Cancel the common factor.
-2((32)33-3⋅03⋅1)+3((32)22-022)
Step 4.9.2.3.2.2.3
Rewrite the expression.
-2((32)33-01)+3((32)22-022)
Step 4.9.2.3.2.2.4
Divide 0 by 1.
-2((32)33-0)+3((32)22-022)
-2((32)33-0)+3((32)22-022)
-2((32)33-0)+3((32)22-022)
Step 4.9.2.3.3
Multiply -1 by 0.
-2((32)33+0)+3((32)22-022)
Step 4.9.2.3.4
Add (32)33 and 0.
-2(32)33+3((32)22-022)
Step 4.9.2.3.5
Raising 0 to any positive power yields 0.
-2(32)33+3((32)22-02)
Step 4.9.2.3.6
Cancel the common factor of 0 and 2.
Step 4.9.2.3.6.1
Factor 2 out of 0.
-2(32)33+3((32)22-2(0)2)
Step 4.9.2.3.6.2
Cancel the common factors.
Step 4.9.2.3.6.2.1
Factor 2 out of 2.
-2(32)33+3((32)22-2⋅02⋅1)
Step 4.9.2.3.6.2.2
Cancel the common factor.
-2(32)33+3((32)22-2⋅02⋅1)
Step 4.9.2.3.6.2.3
Rewrite the expression.
-2(32)33+3((32)22-01)
Step 4.9.2.3.6.2.4
Divide 0 by 1.
-2(32)33+3((32)22-0)
-2(32)33+3((32)22-0)
-2(32)33+3((32)22-0)
Step 4.9.2.3.7
Multiply -1 by 0.
-2(32)33+3((32)22+0)
Step 4.9.2.3.8
Add (32)22 and 0.
-2(32)33+3(32)22
-2(32)33+3(32)22
-2(32)33+3(32)22
Step 4.9.3
Simplify.
Step 4.9.3.1
Simplify each term.
Step 4.9.3.1.1
Simplify the numerator.
Step 4.9.3.1.1.1
Apply the product rule to 32.
-233233+3(32)22
Step 4.9.3.1.1.2
Raise 3 to the power of 3.
-227233+3(32)22
Step 4.9.3.1.1.3
Raise 2 to the power of 3.
-22783+3(32)22
-22783+3(32)22
Step 4.9.3.1.2
Multiply the numerator by the reciprocal of the denominator.
-2(278⋅13)+3(32)22
Step 4.9.3.1.3
Cancel the common factor of 3.
Step 4.9.3.1.3.1
Factor 3 out of 27.
-2(3(9)8⋅13)+3(32)22
Step 4.9.3.1.3.2
Cancel the common factor.
-2(3⋅98⋅13)+3(32)22
Step 4.9.3.1.3.3
Rewrite the expression.
-2(98)+3(32)22
-2(98)+3(32)22
Step 4.9.3.1.4
Cancel the common factor of 2.
Step 4.9.3.1.4.1
Factor 2 out of -2.
2(-1)98+3(32)22
Step 4.9.3.1.4.2
Factor 2 out of 8.
2⋅-192⋅4+3(32)22
Step 4.9.3.1.4.3
Cancel the common factor.
2⋅-192⋅4+3(32)22
Step 4.9.3.1.4.4
Rewrite the expression.
-94+3(32)22
-94+3(32)22
Step 4.9.3.1.5
Simplify the numerator.
Step 4.9.3.1.5.1
Apply the product rule to 32.
-94+332222
Step 4.9.3.1.5.2
Raise 3 to the power of 2.
-94+39222
Step 4.9.3.1.5.3
Raise 2 to the power of 2.
-94+3942
-94+3942
Step 4.9.3.1.6
Multiply the numerator by the reciprocal of the denominator.
-94+3(94⋅12)
Step 4.9.3.1.7
Multiply 94⋅12.
Step 4.9.3.1.7.1
Multiply 94 by 12.
-94+394⋅2
Step 4.9.3.1.7.2
Multiply 4 by 2.
-94+3(98)
-94+3(98)
Step 4.9.3.1.8
Multiply 3(98).
Step 4.9.3.1.8.1
Combine 3 and 98.
-94+3⋅98
Step 4.9.3.1.8.2
Multiply 3 by 9.
-94+278
-94+278
-94+278
Step 4.9.3.2
To write -94 as a fraction with a common denominator, multiply by 22.
-94⋅22+278
Step 4.9.3.3
Write each expression with a common denominator of 8, by multiplying each by an appropriate factor of 1.
Step 4.9.3.3.1
Multiply 94 by 22.
-9⋅24⋅2+278
Step 4.9.3.3.2
Multiply 4 by 2.
-9⋅28+278
-9⋅28+278
Step 4.9.3.4
Combine the numerators over the common denominator.
-9⋅2+278
Step 4.9.3.5
Simplify the numerator.
Step 4.9.3.5.1
Multiply -9 by 2.
-18+278
Step 4.9.3.5.2
Add -18 and 27.
98
98
98
98
98
Step 5