Calculus Examples

f(x)=x4-3x2
Step 1
Find the second derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of x4-3x2 with respect to x is ddx[x4]+ddx[-3x2].
f(x)=ddx(x4)+ddx(-3x2)
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
f(x)=4x3+ddx(-3x2)
f(x)=4x3+ddx(-3x2)
Step 1.1.2
Evaluate ddx[-3x2].
Tap for more steps...
Step 1.1.2.1
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
f(x)=4x3-3ddxx2
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f(x)=4x3-3(2x)
Step 1.1.2.3
Multiply 2 by -3.
f(x)=4x3-6x
f(x)=4x3-6x
f(x)=4x3-6x
Step 1.2
Find the second derivative.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of 4x3-6x with respect to x is ddx[4x3]+ddx[-6x].
f′′(x)=ddx(4x3)+ddx(-6x)
Step 1.2.2
Evaluate ddx[4x3].
Tap for more steps...
Step 1.2.2.1
Since 4 is constant with respect to x, the derivative of 4x3 with respect to x is 4ddx[x3].
f′′(x)=4ddx(x3)+ddx(-6x)
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
f′′(x)=4(3x2)+ddx(-6x)
Step 1.2.2.3
Multiply 3 by 4.
f′′(x)=12x2+ddx(-6x)
f′′(x)=12x2+ddx(-6x)
Step 1.2.3
Evaluate ddx[-6x].
Tap for more steps...
Step 1.2.3.1
Since -6 is constant with respect to x, the derivative of -6x with respect to x is -6ddx[x].
f′′(x)=12x2-6ddxx
Step 1.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=12x2-61
Step 1.2.3.3
Multiply -6 by 1.
f′′(x)=12x2-6
f′′(x)=12x2-6
f′′(x)=12x2-6
Step 1.3
The second derivative of f(x) with respect to x is 12x2-6.
12x2-6
12x2-6
Step 2
Set the second derivative equal to 0 then solve the equation 12x2-6=0.
Tap for more steps...
Step 2.1
Set the second derivative equal to 0.
12x2-6=0
Step 2.2
Add 6 to both sides of the equation.
12x2=6
Step 2.3
Divide each term in 12x2=6 by 12 and simplify.
Tap for more steps...
Step 2.3.1
Divide each term in 12x2=6 by 12.
12x212=612
Step 2.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of 12.
Tap for more steps...
Step 2.3.2.1.1
Cancel the common factor.
12x212=612
Step 2.3.2.1.2
Divide x2 by 1.
x2=612
x2=612
x2=612
Step 2.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.3.1
Cancel the common factor of 6 and 12.
Tap for more steps...
Step 2.3.3.1.1
Factor 6 out of 6.
x2=6(1)12
Step 2.3.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.1.2.1
Factor 6 out of 12.
x2=6162
Step 2.3.3.1.2.2
Cancel the common factor.
x2=6162
Step 2.3.3.1.2.3
Rewrite the expression.
x2=12
x2=12
x2=12
x2=12
x2=12
Step 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±12
Step 2.5
Simplify ±12.
Tap for more steps...
Step 2.5.1
Rewrite 12 as 12.
x=±12
Step 2.5.2
Any root of 1 is 1.
x=±12
Step 2.5.3
Multiply 12 by 22.
x=±1222
Step 2.5.4
Combine and simplify the denominator.
Tap for more steps...
Step 2.5.4.1
Multiply 12 by 22.
x=±222
Step 2.5.4.2
Raise 2 to the power of 1.
x=±2212
Step 2.5.4.3
Raise 2 to the power of 1.
x=±22121
Step 2.5.4.4
Use the power rule aman=am+n to combine exponents.
x=±221+1
Step 2.5.4.5
Add 1 and 1.
x=±222
Step 2.5.4.6
Rewrite 22 as 2.
Tap for more steps...
Step 2.5.4.6.1
Use nax=axn to rewrite 2 as 212.
x=±2(212)2
Step 2.5.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±22122
Step 2.5.4.6.3
Combine 12 and 2.
x=±2222
Step 2.5.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.5.4.6.4.1
Cancel the common factor.
x=±2222
Step 2.5.4.6.4.2
Rewrite the expression.
x=±221
x=±221
Step 2.5.4.6.5
Evaluate the exponent.
x=±22
x=±22
x=±22
x=±22
Step 2.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.6.1
First, use the positive value of the ± to find the first solution.
x=22
Step 2.6.2
Next, use the negative value of the ± to find the second solution.
x=-22
Step 2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=22,-22
x=22,-22
x=22,-22
Step 3
Find the points where the second derivative is 0.
Tap for more steps...
Step 3.1
Substitute 22 in f(x)=x4-3x2 to find the value of y.
Tap for more steps...
Step 3.1.1
Replace the variable x with 22 in the expression.
f(22)=(22)4-3(22)2
Step 3.1.2
Simplify the result.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
Apply the product rule to 22.
f(22)=2424-3(22)2
Step 3.1.2.1.2
Simplify the numerator.
Tap for more steps...
Step 3.1.2.1.2.1
Rewrite 24 as 22.
Tap for more steps...
Step 3.1.2.1.2.1.1
Use nax=axn to rewrite 2 as 212.
f(22)=(212)424-3(22)2
Step 3.1.2.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(22)=212424-3(22)2
Step 3.1.2.1.2.1.3
Combine 12 and 4.
f(22)=24224-3(22)2
Step 3.1.2.1.2.1.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 3.1.2.1.2.1.4.1
Factor 2 out of 4.
f(22)=222224-3(22)2
Step 3.1.2.1.2.1.4.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.1.2.1.4.2.1
Factor 2 out of 2.
f(22)=2222(1)24-3(22)2
Step 3.1.2.1.2.1.4.2.2
Cancel the common factor.
f(22)=2222124-3(22)2
Step 3.1.2.1.2.1.4.2.3
Rewrite the expression.
f(22)=22124-3(22)2
Step 3.1.2.1.2.1.4.2.4
Divide 2 by 1.
f(22)=2224-3(22)2
f(22)=2224-3(22)2
f(22)=2224-3(22)2
f(22)=2224-3(22)2
Step 3.1.2.1.2.2
Raise 2 to the power of 2.
f(22)=424-3(22)2
f(22)=424-3(22)2
Step 3.1.2.1.3
Raise 2 to the power of 4.
f(22)=416-3(22)2
Step 3.1.2.1.4
Cancel the common factor of 4 and 16.
Tap for more steps...
Step 3.1.2.1.4.1
Factor 4 out of 4.
f(22)=4(1)16-3(22)2
Step 3.1.2.1.4.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.1.4.2.1
Factor 4 out of 16.
f(22)=4144-3(22)2
Step 3.1.2.1.4.2.2
Cancel the common factor.
f(22)=4144-3(22)2
Step 3.1.2.1.4.2.3
Rewrite the expression.
f(22)=14-3(22)2
f(22)=14-3(22)2
f(22)=14-3(22)2
Step 3.1.2.1.5
Apply the product rule to 22.
f(22)=14-32222
Step 3.1.2.1.6
Rewrite 22 as 2.
Tap for more steps...
Step 3.1.2.1.6.1
Use nax=axn to rewrite 2 as 212.
f(22)=14-3(212)222
Step 3.1.2.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
f(22)=14-3212222
Step 3.1.2.1.6.3
Combine 12 and 2.
f(22)=14-322222
Step 3.1.2.1.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.1.2.1.6.4.1
Cancel the common factor.
f(22)=14-322222
Step 3.1.2.1.6.4.2
Rewrite the expression.
f(22)=14-3222
f(22)=14-3222
Step 3.1.2.1.6.5
Evaluate the exponent.
f(22)=14-3222
f(22)=14-3222
Step 3.1.2.1.7
Raise 2 to the power of 2.
f(22)=14-3(24)
Step 3.1.2.1.8
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 3.1.2.1.8.1
Factor 2 out of 2.
f(22)=14-32(1)4
Step 3.1.2.1.8.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.1.8.2.1
Factor 2 out of 4.
f(22)=14-32122
Step 3.1.2.1.8.2.2
Cancel the common factor.
f(22)=14-32122
Step 3.1.2.1.8.2.3
Rewrite the expression.
f(22)=14-3(12)
f(22)=14-3(12)
f(22)=14-3(12)
Step 3.1.2.1.9
Combine -3 and 12.
f(22)=14+-32
Step 3.1.2.1.10
Move the negative in front of the fraction.
f(22)=14-32
f(22)=14-32
Step 3.1.2.2
To write -32 as a fraction with a common denominator, multiply by 22.
f(22)=14-3222
Step 3.1.2.3
Write each expression with a common denominator of 4, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.1.2.3.1
Multiply 32 by 22.
f(22)=14-3222
Step 3.1.2.3.2
Multiply 2 by 2.
f(22)=14-324
f(22)=14-324
Step 3.1.2.4
Combine the numerators over the common denominator.
f(22)=1-324
Step 3.1.2.5
Simplify the numerator.
Tap for more steps...
Step 3.1.2.5.1
Multiply -3 by 2.
f(22)=1-64
Step 3.1.2.5.2
Subtract 6 from 1.
f(22)=-54
f(22)=-54
Step 3.1.2.6
Move the negative in front of the fraction.
f(22)=-54
Step 3.1.2.7
The final answer is -54.
-54
-54
-54
Step 3.2
The point found by substituting 22 in f(x)=x4-3x2 is (22,-54). This point can be an inflection point.
(22,-54)
Step 3.3
Substitute -22 in f(x)=x4-3x2 to find the value of y.
Tap for more steps...
Step 3.3.1
Replace the variable x with -22 in the expression.
f(-22)=(-22)4-3(-22)2
Step 3.3.2
Simplify the result.
Tap for more steps...
Step 3.3.2.1
Simplify each term.
Tap for more steps...
Step 3.3.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.3.2.1.1.1
Apply the product rule to -22.
f(-22)=(-1)4(22)4-3(-22)2
Step 3.3.2.1.1.2
Apply the product rule to 22.
f(-22)=(-1)4(2424)-3(-22)2
f(-22)=(-1)4(2424)-3(-22)2
Step 3.3.2.1.2
Raise -1 to the power of 4.
f(-22)=1(2424)-3(-22)2
Step 3.3.2.1.3
Multiply 2424 by 1.
f(-22)=2424-3(-22)2
Step 3.3.2.1.4
Simplify the numerator.
Tap for more steps...
Step 3.3.2.1.4.1
Rewrite 24 as 22.
Tap for more steps...
Step 3.3.2.1.4.1.1
Use nax=axn to rewrite 2 as 212.
f(-22)=(212)424-3(-22)2
Step 3.3.2.1.4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(-22)=212424-3(-22)2
Step 3.3.2.1.4.1.3
Combine 12 and 4.
f(-22)=24224-3(-22)2
Step 3.3.2.1.4.1.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 3.3.2.1.4.1.4.1
Factor 2 out of 4.
f(-22)=222224-3(-22)2
Step 3.3.2.1.4.1.4.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.1.4.1.4.2.1
Factor 2 out of 2.
f(-22)=2222(1)24-3(-22)2
Step 3.3.2.1.4.1.4.2.2
Cancel the common factor.
f(-22)=2222124-3(-22)2
Step 3.3.2.1.4.1.4.2.3
Rewrite the expression.
f(-22)=22124-3(-22)2
Step 3.3.2.1.4.1.4.2.4
Divide 2 by 1.
f(-22)=2224-3(-22)2
f(-22)=2224-3(-22)2
f(-22)=2224-3(-22)2
f(-22)=2224-3(-22)2
Step 3.3.2.1.4.2
Raise 2 to the power of 2.
f(-22)=424-3(-22)2
f(-22)=424-3(-22)2
Step 3.3.2.1.5
Raise 2 to the power of 4.
f(-22)=416-3(-22)2
Step 3.3.2.1.6
Cancel the common factor of 4 and 16.
Tap for more steps...
Step 3.3.2.1.6.1
Factor 4 out of 4.
f(-22)=4(1)16-3(-22)2
Step 3.3.2.1.6.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.1.6.2.1
Factor 4 out of 16.
f(-22)=4144-3(-22)2
Step 3.3.2.1.6.2.2
Cancel the common factor.
f(-22)=4144-3(-22)2
Step 3.3.2.1.6.2.3
Rewrite the expression.
f(-22)=14-3(-22)2
f(-22)=14-3(-22)2
f(-22)=14-3(-22)2
Step 3.3.2.1.7
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.3.2.1.7.1
Apply the product rule to -22.
f(-22)=14-3((-1)2(22)2)
Step 3.3.2.1.7.2
Apply the product rule to 22.
f(-22)=14-3((-1)2(2222))
f(-22)=14-3((-1)2(2222))
Step 3.3.2.1.8
Raise -1 to the power of 2.
f(-22)=14-3(1(2222))
Step 3.3.2.1.9
Multiply 2222 by 1.
f(-22)=14-32222
Step 3.3.2.1.10
Rewrite 22 as 2.
Tap for more steps...
Step 3.3.2.1.10.1
Use nax=axn to rewrite 2 as 212.
f(-22)=14-3(212)222
Step 3.3.2.1.10.2
Apply the power rule and multiply exponents, (am)n=amn.
f(-22)=14-3212222
Step 3.3.2.1.10.3
Combine 12 and 2.
f(-22)=14-322222
Step 3.3.2.1.10.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.2.1.10.4.1
Cancel the common factor.
f(-22)=14-322222
Step 3.3.2.1.10.4.2
Rewrite the expression.
f(-22)=14-3222
f(-22)=14-3222
Step 3.3.2.1.10.5
Evaluate the exponent.
f(-22)=14-3222
f(-22)=14-3222
Step 3.3.2.1.11
Raise 2 to the power of 2.
f(-22)=14-3(24)
Step 3.3.2.1.12
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 3.3.2.1.12.1
Factor 2 out of 2.
f(-22)=14-32(1)4
Step 3.3.2.1.12.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.1.12.2.1
Factor 2 out of 4.
f(-22)=14-32122
Step 3.3.2.1.12.2.2
Cancel the common factor.
f(-22)=14-32122
Step 3.3.2.1.12.2.3
Rewrite the expression.
f(-22)=14-3(12)
f(-22)=14-3(12)
f(-22)=14-3(12)
Step 3.3.2.1.13
Combine -3 and 12.
f(-22)=14+-32
Step 3.3.2.1.14
Move the negative in front of the fraction.
f(-22)=14-32
f(-22)=14-32
Step 3.3.2.2
To write -32 as a fraction with a common denominator, multiply by 22.
f(-22)=14-3222
Step 3.3.2.3
Write each expression with a common denominator of 4, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.3.2.3.1
Multiply 32 by 22.
f(-22)=14-3222
Step 3.3.2.3.2
Multiply 2 by 2.
f(-22)=14-324
f(-22)=14-324
Step 3.3.2.4
Combine the numerators over the common denominator.
f(-22)=1-324
Step 3.3.2.5
Simplify the numerator.
Tap for more steps...
Step 3.3.2.5.1
Multiply -3 by 2.
f(-22)=1-64
Step 3.3.2.5.2
Subtract 6 from 1.
f(-22)=-54
f(-22)=-54
Step 3.3.2.6
Move the negative in front of the fraction.
f(-22)=-54
Step 3.3.2.7
The final answer is -54.
-54
-54
-54
Step 3.4
The point found by substituting -22 in f(x)=x4-3x2 is (-22,-54). This point can be an inflection point.
(-22,-54)
Step 3.5
Determine the points that could be inflection points.
(22,-54),(-22,-54)
(22,-54),(-22,-54)
Step 4
Split (-,) into intervals around the points that could potentially be inflection points.
(-,-22)(-22,22)(22,)
Step 5
Substitute a value from the interval (-,-22) into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 5.1
Replace the variable x with -0.80710678 in the expression.
f′′(-0.80710678)=12(-0.80710678)2-6
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Raise -0.80710678 to the power of 2.
f′′(-0.80710678)=120.65142135-6
Step 5.2.1.2
Multiply 12 by 0.65142135.
f′′(-0.80710678)=7.81705627-6
f′′(-0.80710678)=7.81705627-6
Step 5.2.2
Subtract 6 from 7.81705627.
f′′(-0.80710678)=1.81705627
Step 5.2.3
The final answer is 1.81705627.
1.81705627
1.81705627
Step 5.3
At -0.80710678, the second derivative is 1.81705627. Since this is positive, the second derivative is increasing on the interval (-,-22).
Increasing on (-,-22) since f′′(x)>0
Increasing on (-,-22) since f′′(x)>0
Step 6
Substitute a value from the interval (-22,22) into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable x with 0 in the expression.
f′′(0)=12(0)2-6
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Raising 0 to any positive power yields 0.
f′′(0)=120-6
Step 6.2.1.2
Multiply 12 by 0.
f′′(0)=0-6
f′′(0)=0-6
Step 6.2.2
Subtract 6 from 0.
f′′(0)=-6
Step 6.2.3
The final answer is -6.
-6
-6
Step 6.3
At 0, the second derivative is -6. Since this is negative, the second derivative is decreasing on the interval (-22,22)
Decreasing on (-22,22) since f′′(x)<0
Decreasing on (-22,22) since f′′(x)<0
Step 7
Substitute a value from the interval (22,) into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable x with 0.80710678 in the expression.
f′′(0.80710678)=12(0.80710678)2-6
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Raise 0.80710678 to the power of 2.
f′′(0.80710678)=120.65142135-6
Step 7.2.1.2
Multiply 12 by 0.65142135.
f′′(0.80710678)=7.81705627-6
f′′(0.80710678)=7.81705627-6
Step 7.2.2
Subtract 6 from 7.81705627.
f′′(0.80710678)=1.81705627
Step 7.2.3
The final answer is 1.81705627.
1.81705627
1.81705627
Step 7.3
At 0.80710678, the second derivative is 1.81705627. Since this is positive, the second derivative is increasing on the interval (22,).
Increasing on (22,) since f′′(x)>0
Increasing on (22,) since f′′(x)>0
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are (-22,-54),(22,-54).
(-22,-54),(22,-54)
Step 9
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay