Calculus Examples
f(x)=5x4-10x2
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of 5x4-10x2 with respect to x is ddx[5x4]+ddx[-10x2].
f′(x)=ddx(5x4)+ddx(-10x2)
Step 1.1.2
Evaluate ddx[5x4].
Step 1.1.2.1
Since 5 is constant with respect to x, the derivative of 5x4 with respect to x is 5ddx[x4].
f′(x)=5ddx(x4)+ddx(-10x2)
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
f′(x)=5(4x3)+ddx(-10x2)
Step 1.1.2.3
Multiply 4 by 5.
f′(x)=20x3+ddx(-10x2)
f′(x)=20x3+ddx(-10x2)
Step 1.1.3
Evaluate ddx[-10x2].
Step 1.1.3.1
Since -10 is constant with respect to x, the derivative of -10x2 with respect to x is -10ddx[x2].
f′(x)=20x3-10ddxx2
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′(x)=20x3-10(2x)
Step 1.1.3.3
Multiply 2 by -10.
f′(x)=20x3-20x
f′(x)=20x3-20x
f′(x)=20x3-20x
Step 1.2
Find the second derivative.
Step 1.2.1
By the Sum Rule, the derivative of 20x3-20x with respect to x is ddx[20x3]+ddx[-20x].
f′′(x)=ddx(20x3)+ddx(-20x)
Step 1.2.2
Evaluate ddx[20x3].
Step 1.2.2.1
Since 20 is constant with respect to x, the derivative of 20x3 with respect to x is 20ddx[x3].
f′′(x)=20ddx(x3)+ddx(-20x)
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
f′′(x)=20(3x2)+ddx(-20x)
Step 1.2.2.3
Multiply 3 by 20.
f′′(x)=60x2+ddx(-20x)
f′′(x)=60x2+ddx(-20x)
Step 1.2.3
Evaluate ddx[-20x].
Step 1.2.3.1
Since -20 is constant with respect to x, the derivative of -20x with respect to x is -20ddx[x].
f′′(x)=60x2-20ddxx
Step 1.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=60x2-20⋅1
Step 1.2.3.3
Multiply -20 by 1.
f′′(x)=60x2-20
f′′(x)=60x2-20
f′′(x)=60x2-20
Step 1.3
The second derivative of f(x) with respect to x is 60x2-20.
60x2-20
60x2-20
Step 2
Step 2.1
Set the second derivative equal to 0.
60x2-20=0
Step 2.2
Add 20 to both sides of the equation.
60x2=20
Step 2.3
Divide each term in 60x2=20 by 60 and simplify.
Step 2.3.1
Divide each term in 60x2=20 by 60.
60x260=2060
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of 60.
Step 2.3.2.1.1
Cancel the common factor.
60x260=2060
Step 2.3.2.1.2
Divide x2 by 1.
x2=2060
x2=2060
x2=2060
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Cancel the common factor of 20 and 60.
Step 2.3.3.1.1
Factor 20 out of 20.
x2=20(1)60
Step 2.3.3.1.2
Cancel the common factors.
Step 2.3.3.1.2.1
Factor 20 out of 60.
x2=20⋅120⋅3
Step 2.3.3.1.2.2
Cancel the common factor.
x2=20⋅120⋅3
Step 2.3.3.1.2.3
Rewrite the expression.
x2=13
x2=13
x2=13
x2=13
x2=13
Step 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√13
Step 2.5
Simplify ±√13.
Step 2.5.1
Rewrite √13 as √1√3.
x=±√1√3
Step 2.5.2
Any root of 1 is 1.
x=±1√3
Step 2.5.3
Multiply 1√3 by √3√3.
x=±1√3⋅√3√3
Step 2.5.4
Combine and simplify the denominator.
Step 2.5.4.1
Multiply 1√3 by √3√3.
x=±√3√3√3
Step 2.5.4.2
Raise √3 to the power of 1.
x=±√3√31√3
Step 2.5.4.3
Raise √3 to the power of 1.
x=±√3√31√31
Step 2.5.4.4
Use the power rule aman=am+n to combine exponents.
x=±√3√31+1
Step 2.5.4.5
Add 1 and 1.
x=±√3√32
Step 2.5.4.6
Rewrite √32 as 3.
Step 2.5.4.6.1
Use n√ax=axn to rewrite √3 as 312.
x=±√3(312)2
Step 2.5.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±√3312⋅2
Step 2.5.4.6.3
Combine 12 and 2.
x=±√3322
Step 2.5.4.6.4
Cancel the common factor of 2.
Step 2.5.4.6.4.1
Cancel the common factor.
x=±√3322
Step 2.5.4.6.4.2
Rewrite the expression.
x=±√331
x=±√331
Step 2.5.4.6.5
Evaluate the exponent.
x=±√33
x=±√33
x=±√33
x=±√33
Step 2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.6.1
First, use the positive value of the ± to find the first solution.
x=√33
Step 2.6.2
Next, use the negative value of the ± to find the second solution.
x=-√33
Step 2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√33,-√33
x=√33,-√33
x=√33,-√33
Step 3
Step 3.1
Substitute √33 in f(x)=5x4-10x2 to find the value of y.
Step 3.1.1
Replace the variable x with √33 in the expression.
f(√33)=5(√33)4-10(√33)2
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Apply the product rule to √33.
f(√33)=5(√3434)-10(√33)2
Step 3.1.2.1.2
Simplify the numerator.
Step 3.1.2.1.2.1
Rewrite √34 as 32.
Step 3.1.2.1.2.1.1
Use n√ax=axn to rewrite √3 as 312.
f(√33)=5((312)434)-10(√33)2
Step 3.1.2.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(√33)=5(312⋅434)-10(√33)2
Step 3.1.2.1.2.1.3
Combine 12 and 4.
f(√33)=5(34234)-10(√33)2
Step 3.1.2.1.2.1.4
Cancel the common factor of 4 and 2.
Step 3.1.2.1.2.1.4.1
Factor 2 out of 4.
f(√33)=5(32⋅2234)-10(√33)2
Step 3.1.2.1.2.1.4.2
Cancel the common factors.
Step 3.1.2.1.2.1.4.2.1
Factor 2 out of 2.
f(√33)=5(32⋅22(1)34)-10(√33)2
Step 3.1.2.1.2.1.4.2.2
Cancel the common factor.
f(√33)=5(32⋅22⋅134)-10(√33)2
Step 3.1.2.1.2.1.4.2.3
Rewrite the expression.
f(√33)=5(32134)-10(√33)2
Step 3.1.2.1.2.1.4.2.4
Divide 2 by 1.
f(√33)=5(3234)-10(√33)2
f(√33)=5(3234)-10(√33)2
f(√33)=5(3234)-10(√33)2
f(√33)=5(3234)-10(√33)2
Step 3.1.2.1.2.2
Raise 3 to the power of 2.
f(√33)=5(934)-10(√33)2
f(√33)=5(934)-10(√33)2
Step 3.1.2.1.3
Raise 3 to the power of 4.
f(√33)=5(981)-10(√33)2
Step 3.1.2.1.4
Cancel the common factor of 9 and 81.
Step 3.1.2.1.4.1
Factor 9 out of 9.
f(√33)=5(9(1)81)-10(√33)2
Step 3.1.2.1.4.2
Cancel the common factors.
Step 3.1.2.1.4.2.1
Factor 9 out of 81.
f(√33)=5(9⋅19⋅9)-10(√33)2
Step 3.1.2.1.4.2.2
Cancel the common factor.
f(√33)=5(9⋅19⋅9)-10(√33)2
Step 3.1.2.1.4.2.3
Rewrite the expression.
f(√33)=5(19)-10(√33)2
f(√33)=5(19)-10(√33)2
f(√33)=5(19)-10(√33)2
Step 3.1.2.1.5
Combine 5 and 19.
f(√33)=59-10(√33)2
Step 3.1.2.1.6
Apply the product rule to √33.
f(√33)=59-10√3232
Step 3.1.2.1.7
Rewrite √32 as 3.
Step 3.1.2.1.7.1
Use n√ax=axn to rewrite √3 as 312.
f(√33)=59-10(312)232
Step 3.1.2.1.7.2
Apply the power rule and multiply exponents, (am)n=amn.
f(√33)=59-10312⋅232
Step 3.1.2.1.7.3
Combine 12 and 2.
f(√33)=59-1032232
Step 3.1.2.1.7.4
Cancel the common factor of 2.
Step 3.1.2.1.7.4.1
Cancel the common factor.
f(√33)=59-1032232
Step 3.1.2.1.7.4.2
Rewrite the expression.
f(√33)=59-10332
f(√33)=59-10332
Step 3.1.2.1.7.5
Evaluate the exponent.
f(√33)=59-10332
f(√33)=59-10332
Step 3.1.2.1.8
Raise 3 to the power of 2.
f(√33)=59-10(39)
Step 3.1.2.1.9
Cancel the common factor of 3 and 9.
Step 3.1.2.1.9.1
Factor 3 out of 3.
f(√33)=59-103(1)9
Step 3.1.2.1.9.2
Cancel the common factors.
Step 3.1.2.1.9.2.1
Factor 3 out of 9.
f(√33)=59-103⋅13⋅3
Step 3.1.2.1.9.2.2
Cancel the common factor.
f(√33)=59-103⋅13⋅3
Step 3.1.2.1.9.2.3
Rewrite the expression.
f(√33)=59-10(13)
f(√33)=59-10(13)
f(√33)=59-10(13)
Step 3.1.2.1.10
Combine -10 and 13.
f(√33)=59+-103
Step 3.1.2.1.11
Move the negative in front of the fraction.
f(√33)=59-103
f(√33)=59-103
Step 3.1.2.2
To write -103 as a fraction with a common denominator, multiply by 33.
f(√33)=59-103⋅33
Step 3.1.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Step 3.1.2.3.1
Multiply 103 by 33.
f(√33)=59-10⋅33⋅3
Step 3.1.2.3.2
Multiply 3 by 3.
f(√33)=59-10⋅39
f(√33)=59-10⋅39
Step 3.1.2.4
Combine the numerators over the common denominator.
f(√33)=5-10⋅39
Step 3.1.2.5
Simplify the numerator.
Step 3.1.2.5.1
Multiply -10 by 3.
f(√33)=5-309
Step 3.1.2.5.2
Subtract 30 from 5.
f(√33)=-259
f(√33)=-259
Step 3.1.2.6
Move the negative in front of the fraction.
f(√33)=-259
Step 3.1.2.7
The final answer is -259.
-259
-259
-259
Step 3.2
The point found by substituting √33 in f(x)=5x4-10x2 is (√33,-259). This point can be an inflection point.
(√33,-259)
Step 3.3
Substitute -√33 in f(x)=5x4-10x2 to find the value of y.
Step 3.3.1
Replace the variable x with -√33 in the expression.
f(-√33)=5(-√33)4-10(-√33)2
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.2.1.1.1
Apply the product rule to -√33.
f(-√33)=5((-1)4(√33)4)-10(-√33)2
Step 3.3.2.1.1.2
Apply the product rule to √33.
f(-√33)=5((-1)4(√3434))-10(-√33)2
f(-√33)=5((-1)4(√3434))-10(-√33)2
Step 3.3.2.1.2
Raise -1 to the power of 4.
f(-√33)=5(1(√3434))-10(-√33)2
Step 3.3.2.1.3
Multiply √3434 by 1.
f(-√33)=5(√3434)-10(-√33)2
Step 3.3.2.1.4
Simplify the numerator.
Step 3.3.2.1.4.1
Rewrite √34 as 32.
Step 3.3.2.1.4.1.1
Use n√ax=axn to rewrite √3 as 312.
f(-√33)=5((312)434)-10(-√33)2
Step 3.3.2.1.4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(-√33)=5(312⋅434)-10(-√33)2
Step 3.3.2.1.4.1.3
Combine 12 and 4.
f(-√33)=5(34234)-10(-√33)2
Step 3.3.2.1.4.1.4
Cancel the common factor of 4 and 2.
Step 3.3.2.1.4.1.4.1
Factor 2 out of 4.
f(-√33)=5(32⋅2234)-10(-√33)2
Step 3.3.2.1.4.1.4.2
Cancel the common factors.
Step 3.3.2.1.4.1.4.2.1
Factor 2 out of 2.
f(-√33)=5(32⋅22(1)34)-10(-√33)2
Step 3.3.2.1.4.1.4.2.2
Cancel the common factor.
f(-√33)=5(32⋅22⋅134)-10(-√33)2
Step 3.3.2.1.4.1.4.2.3
Rewrite the expression.
f(-√33)=5(32134)-10(-√33)2
Step 3.3.2.1.4.1.4.2.4
Divide 2 by 1.
f(-√33)=5(3234)-10(-√33)2
f(-√33)=5(3234)-10(-√33)2
f(-√33)=5(3234)-10(-√33)2
f(-√33)=5(3234)-10(-√33)2
Step 3.3.2.1.4.2
Raise 3 to the power of 2.
f(-√33)=5(934)-10(-√33)2
f(-√33)=5(934)-10(-√33)2
Step 3.3.2.1.5
Raise 3 to the power of 4.
f(-√33)=5(981)-10(-√33)2
Step 3.3.2.1.6
Cancel the common factor of 9 and 81.
Step 3.3.2.1.6.1
Factor 9 out of 9.
f(-√33)=5(9(1)81)-10(-√33)2
Step 3.3.2.1.6.2
Cancel the common factors.
Step 3.3.2.1.6.2.1
Factor 9 out of 81.
f(-√33)=5(9⋅19⋅9)-10(-√33)2
Step 3.3.2.1.6.2.2
Cancel the common factor.
f(-√33)=5(9⋅19⋅9)-10(-√33)2
Step 3.3.2.1.6.2.3
Rewrite the expression.
f(-√33)=5(19)-10(-√33)2
f(-√33)=5(19)-10(-√33)2
f(-√33)=5(19)-10(-√33)2
Step 3.3.2.1.7
Combine 5 and 19.
f(-√33)=59-10(-√33)2
Step 3.3.2.1.8
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.2.1.8.1
Apply the product rule to -√33.
f(-√33)=59-10((-1)2(√33)2)
Step 3.3.2.1.8.2
Apply the product rule to √33.
f(-√33)=59-10((-1)2(√3232))
f(-√33)=59-10((-1)2(√3232))
Step 3.3.2.1.9
Raise -1 to the power of 2.
f(-√33)=59-10(1(√3232))
Step 3.3.2.1.10
Multiply √3232 by 1.
f(-√33)=59-10√3232
Step 3.3.2.1.11
Rewrite √32 as 3.
Step 3.3.2.1.11.1
Use n√ax=axn to rewrite √3 as 312.
f(-√33)=59-10(312)232
Step 3.3.2.1.11.2
Apply the power rule and multiply exponents, (am)n=amn.
f(-√33)=59-10312⋅232
Step 3.3.2.1.11.3
Combine 12 and 2.
f(-√33)=59-1032232
Step 3.3.2.1.11.4
Cancel the common factor of 2.
Step 3.3.2.1.11.4.1
Cancel the common factor.
f(-√33)=59-1032232
Step 3.3.2.1.11.4.2
Rewrite the expression.
f(-√33)=59-10332
f(-√33)=59-10332
Step 3.3.2.1.11.5
Evaluate the exponent.
f(-√33)=59-10332
f(-√33)=59-10332
Step 3.3.2.1.12
Raise 3 to the power of 2.
f(-√33)=59-10(39)
Step 3.3.2.1.13
Cancel the common factor of 3 and 9.
Step 3.3.2.1.13.1
Factor 3 out of 3.
f(-√33)=59-103(1)9
Step 3.3.2.1.13.2
Cancel the common factors.
Step 3.3.2.1.13.2.1
Factor 3 out of 9.
f(-√33)=59-103⋅13⋅3
Step 3.3.2.1.13.2.2
Cancel the common factor.
f(-√33)=59-103⋅13⋅3
Step 3.3.2.1.13.2.3
Rewrite the expression.
f(-√33)=59-10(13)
f(-√33)=59-10(13)
f(-√33)=59-10(13)
Step 3.3.2.1.14
Combine -10 and 13.
f(-√33)=59+-103
Step 3.3.2.1.15
Move the negative in front of the fraction.
f(-√33)=59-103
f(-√33)=59-103
Step 3.3.2.2
To write -103 as a fraction with a common denominator, multiply by 33.
f(-√33)=59-103⋅33
Step 3.3.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Step 3.3.2.3.1
Multiply 103 by 33.
f(-√33)=59-10⋅33⋅3
Step 3.3.2.3.2
Multiply 3 by 3.
f(-√33)=59-10⋅39
f(-√33)=59-10⋅39
Step 3.3.2.4
Combine the numerators over the common denominator.
f(-√33)=5-10⋅39
Step 3.3.2.5
Simplify the numerator.
Step 3.3.2.5.1
Multiply -10 by 3.
f(-√33)=5-309
Step 3.3.2.5.2
Subtract 30 from 5.
f(-√33)=-259
f(-√33)=-259
Step 3.3.2.6
Move the negative in front of the fraction.
f(-√33)=-259
Step 3.3.2.7
The final answer is -259.
-259
-259
-259
Step 3.4
The point found by substituting -√33 in f(x)=5x4-10x2 is (-√33,-259). This point can be an inflection point.
(-√33,-259)
Step 3.5
Determine the points that could be inflection points.
(√33,-259),(-√33,-259)
(√33,-259),(-√33,-259)
Step 4
Split (-∞,∞) into intervals around the points that could potentially be inflection points.
(-∞,-√33)∪(-√33,√33)∪(√33,∞)
Step 5
Step 5.1
Replace the variable x with -0.67735026 in the expression.
f′′(-0.67735026)=60(-0.67735026)2-20
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise -0.67735026 to the power of 2.
f′′(-0.67735026)=60⋅0.45880338-20
Step 5.2.1.2
Multiply 60 by 0.45880338.
f′′(-0.67735026)=27.52820323-20
f′′(-0.67735026)=27.52820323-20
Step 5.2.2
Subtract 20 from 27.52820323.
f′′(-0.67735026)=7.52820323
Step 5.2.3
The final answer is 7.52820323.
7.52820323
7.52820323
Step 5.3
At -0.67735026, the second derivative is 7.52820323. Since this is positive, the second derivative is increasing on the interval (-∞,-√33).
Increasing on (-∞,-√33) since f′′(x)>0
Increasing on (-∞,-√33) since f′′(x)>0
Step 6
Step 6.1
Replace the variable x with 0 in the expression.
f′′(0)=60(0)2-20
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Raising 0 to any positive power yields 0.
f′′(0)=60⋅0-20
Step 6.2.1.2
Multiply 60 by 0.
f′′(0)=0-20
f′′(0)=0-20
Step 6.2.2
Subtract 20 from 0.
f′′(0)=-20
Step 6.2.3
The final answer is -20.
-20
-20
Step 6.3
At 0, the second derivative is -20. Since this is negative, the second derivative is decreasing on the interval (-√33,√33)
Decreasing on (-√33,√33) since f′′(x)<0
Decreasing on (-√33,√33) since f′′(x)<0
Step 7
Step 7.1
Replace the variable x with 0.67735026 in the expression.
f′′(0.67735026)=60(0.67735026)2-20
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise 0.67735026 to the power of 2.
f′′(0.67735026)=60⋅0.45880338-20
Step 7.2.1.2
Multiply 60 by 0.45880338.
f′′(0.67735026)=27.52820323-20
f′′(0.67735026)=27.52820323-20
Step 7.2.2
Subtract 20 from 27.52820323.
f′′(0.67735026)=7.52820323
Step 7.2.3
The final answer is 7.52820323.
7.52820323
7.52820323
Step 7.3
At 0.67735026, the second derivative is 7.52820323. Since this is positive, the second derivative is increasing on the interval (√33,∞).
Increasing on (√33,∞) since f′′(x)>0
Increasing on (√33,∞) since f′′(x)>0
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are (-√33,-259),(√33,-259).
(-√33,-259),(√33,-259)
Step 9