Calculus Examples
(2x3-x2-48x+15)÷(x-5)(2x3−x2−48x+15)÷(x−5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 |
Step 2
Divide the highest order term in the dividend 2x32x3 by the highest order term in divisor xx.
2x22x2 | |||||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 |
Step 3
Multiply the new quotient term by the divisor.
2x22x2 | |||||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
+ | 2x32x3 | - | 10x210x2 |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 2x3-10x22x3−10x2
2x22x2 | |||||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x22x2 | |||||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 |
Step 6
Pull the next terms from the original dividend down into the current dividend.
2x22x2 | |||||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x |
Step 7
Divide the highest order term in the dividend 9x29x2 by the highest order term in divisor xx.
2x22x2 | + | 9x9x | |||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x |
Step 8
Multiply the new quotient term by the divisor.
2x22x2 | + | 9x9x | |||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
+ | 9x29x2 | - | 45x45x |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in 9x2-45x9x2−45x
2x22x2 | + | 9x9x | |||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x22x2 | + | 9x9x | |||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x |
Step 11
Pull the next terms from the original dividend down into the current dividend.
2x22x2 | + | 9x9x | |||||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x | + | 1515 |
Step 12
Divide the highest order term in the dividend -3x−3x by the highest order term in divisor xx.
2x22x2 | + | 9x9x | - | 33 | |||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x | + | 1515 |
Step 13
Multiply the new quotient term by the divisor.
2x22x2 | + | 9x9x | - | 33 | |||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x | + | 1515 | ||||||||
- | 3x3x | + | 1515 |
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in -3x+15−3x+15
2x22x2 | + | 9x9x | - | 33 | |||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x | + | 1515 | ||||||||
+ | 3x3x | - | 1515 |
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x22x2 | + | 9x9x | - | 33 | |||||||
xx | - | 55 | 2x32x3 | - | x2x2 | - | 48x48x | + | 1515 | ||
- | 2x32x3 | + | 10x210x2 | ||||||||
+ | 9x29x2 | - | 48x48x | ||||||||
- | 9x29x2 | + | 45x45x | ||||||||
- | 3x3x | + | 1515 | ||||||||
+ | 3x3x | - | 1515 | ||||||||
00 |
Step 16
Since the remainder is 00, the final answer is the quotient.
2x2+9x-32x2+9x−3