Examples

12x2-64x-1112x264x11 , x+1x+1
Step 1
Divide the first expression by the second expression.
12x2-64x-11x+112x264x11x+1
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx+1112x212x2-64x64x-1111
Step 3
Divide the highest order term in the dividend 12x212x2 by the highest order term in divisor xx.
12x12x
xx+1112x212x2-64x64x-1111
Step 4
Multiply the new quotient term by the divisor.
12x12x
xx+1112x212x2-64x64x-1111
+12x212x2+12x12x
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in 12x2+12x12x2+12x
12x12x
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
12x12x
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x
Step 7
Pull the next terms from the original dividend down into the current dividend.
12x12x
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x-1111
Step 8
Divide the highest order term in the dividend -76x76x by the highest order term in divisor xx.
12x12x-7676
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x-1111
Step 9
Multiply the new quotient term by the divisor.
12x12x-7676
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x-1111
-76x76x-7676
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in -76x-7676x76
12x12x-7676
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x-1111
+76x76x+7676
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
12x12x-7676
xx+1112x212x2-64x64x-1111
-12x212x2-12x12x
-76x76x-1111
+76x76x+7676
+6565
Step 12
The final answer is the quotient plus the remainder over the divisor.
12x-76+65x+112x76+65x+1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay