Examples
12x2-64x-1112x2−64x−11 , x+1x+1
Step 1
Divide the first expression by the second expression.
12x2-64x-11x+112x2−64x−11x+1
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 |
Step 3
Divide the highest order term in the dividend 12x212x2 by the highest order term in divisor xx.
12x12x | |||||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 |
Step 4
Multiply the new quotient term by the divisor.
12x12x | |||||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
+ | 12x212x2 | + | 12x12x |
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in 12x2+12x12x2+12x
12x12x | |||||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x |
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
12x12x | |||||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x |
Step 7
Pull the next terms from the original dividend down into the current dividend.
12x12x | |||||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x | - | 1111 |
Step 8
Divide the highest order term in the dividend -76x−76x by the highest order term in divisor xx.
12x12x | - | 7676 | |||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x | - | 1111 |
Step 9
Multiply the new quotient term by the divisor.
12x12x | - | 7676 | |||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x | - | 1111 | ||||||
- | 76x76x | - | 7676 |
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in -76x-76−76x−76
12x12x | - | 7676 | |||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x | - | 1111 | ||||||
+ | 76x76x | + | 7676 |
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
12x12x | - | 7676 | |||||||
xx | + | 11 | 12x212x2 | - | 64x64x | - | 1111 | ||
- | 12x212x2 | - | 12x12x | ||||||
- | 76x76x | - | 1111 | ||||||
+ | 76x76x | + | 7676 | ||||||
+ | 6565 |
Step 12
The final answer is the quotient plus the remainder over the divisor.
12x-76+65x+112x−76+65x+1