Examples
3x+6x2x+3
Step 1
Step 1.1
Reorder 3x and 6x2.
6x2+3xx+3
Step 1.2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x | + | 3 | 6x2 | + | 3x | + | 0 |
Step 1.3
Divide the highest order term in the dividend 6x2 by the highest order term in divisor x.
6x | |||||||||
x | + | 3 | 6x2 | + | 3x | + | 0 |
Step 1.4
Multiply the new quotient term by the divisor.
6x | |||||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
+ | 6x2 | + | 18x |
Step 1.5
The expression needs to be subtracted from the dividend, so change all the signs in 6x2+18x
6x | |||||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x |
Step 1.6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
6x | |||||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x |
Step 1.7
Pull the next terms from the original dividend down into the current dividend.
6x | |||||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x | + | 0 |
Step 1.8
Divide the highest order term in the dividend -15x by the highest order term in divisor x.
6x | - | 15 | |||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x | + | 0 |
Step 1.9
Multiply the new quotient term by the divisor.
6x | - | 15 | |||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x | + | 0 | ||||||
- | 15x | - | 45 |
Step 1.10
The expression needs to be subtracted from the dividend, so change all the signs in -15x-45
6x | - | 15 | |||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x | + | 0 | ||||||
+ | 15x | + | 45 |
Step 1.11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
6x | - | 15 | |||||||
x | + | 3 | 6x2 | + | 3x | + | 0 | ||
- | 6x2 | - | 18x | ||||||
- | 15x | + | 0 | ||||||
+ | 15x | + | 45 | ||||||
+ | 45 |
Step 1.12
The final answer is the quotient plus the remainder over the divisor.
6x-15+45x+3
6x-15+45x+3
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.
45