Examples
f(x)=x3-1f(x)=x3−1
Step 1
Step 1.1
To find the x-intercept(s), substitute in 00 for yy and solve for xx.
0=x3-10=x3−1
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as x3-1=0x3−1=0.
x3-1=0x3−1=0
Step 1.2.2
Add 11 to both sides of the equation.
x3=1x3=1
Step 1.2.3
Subtract 11 from both sides of the equation.
x3-1=0x3−1=0
Step 1.2.4
Factor the left side of the equation.
Step 1.2.4.1
Rewrite 11 as 1313.
x3-13=0x3−13=0
Step 1.2.4.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=xa=x and b=1b=1.
(x-1)(x2+x⋅1+12)=0(x−1)(x2+x⋅1+12)=0
Step 1.2.4.3
Simplify.
Step 1.2.4.3.1
Multiply xx by 11.
(x-1)(x2+x+12)=0(x−1)(x2+x+12)=0
Step 1.2.4.3.2
One to any power is one.
(x-1)(x2+x+1)=0(x−1)(x2+x+1)=0
(x-1)(x2+x+1)=0(x−1)(x2+x+1)=0
(x-1)(x2+x+1)=0(x−1)(x2+x+1)=0
Step 1.2.5
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x-1=0x−1=0
x2+x+1=0x2+x+1=0
Step 1.2.6
Set x-1x−1 equal to 00 and solve for xx.
Step 1.2.6.1
Set x-1x−1 equal to 00.
x-1=0x−1=0
Step 1.2.6.2
Add 11 to both sides of the equation.
x=1x=1
x=1x=1
Step 1.2.7
Set x2+x+1x2+x+1 equal to 00 and solve for xx.
Step 1.2.7.1
Set x2+x+1x2+x+1 equal to 00.
x2+x+1=0x2+x+1=0
Step 1.2.7.2
Solve x2+x+1=0x2+x+1=0 for xx.
Step 1.2.7.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 1.2.7.2.2
Substitute the values a=1a=1, b=1b=1, and c=1c=1 into the quadratic formula and solve for xx.
-1±√12-4⋅(1⋅1)2⋅1−1±√12−4⋅(1⋅1)2⋅1
Step 1.2.7.2.3
Simplify.
Step 1.2.7.2.3.1
Simplify the numerator.
Step 1.2.7.2.3.1.1
One to any power is one.
x=-1±√1-4⋅1⋅12⋅1x=−1±√1−4⋅1⋅12⋅1
Step 1.2.7.2.3.1.2
Multiply -4⋅1⋅1−4⋅1⋅1.
Step 1.2.7.2.3.1.2.1
Multiply -4−4 by 11.
x=-1±√1-4⋅12⋅1x=−1±√1−4⋅12⋅1
Step 1.2.7.2.3.1.2.2
Multiply -4−4 by 11.
x=-1±√1-42⋅1x=−1±√1−42⋅1
x=-1±√1-42⋅1x=−1±√1−42⋅1
Step 1.2.7.2.3.1.3
Subtract 44 from 11.
x=-1±√-32⋅1x=−1±√−32⋅1
Step 1.2.7.2.3.1.4
Rewrite -3−3 as -1(3)−1(3).
x=-1±√-1⋅32⋅1x=−1±√−1⋅32⋅1
Step 1.2.7.2.3.1.5
Rewrite √-1(3)√−1(3) as √-1⋅√3√−1⋅√3.
x=-1±√-1⋅√32⋅1x=−1±√−1⋅√32⋅1
Step 1.2.7.2.3.1.6
Rewrite √-1√−1 as ii.
x=-1±i√32⋅1x=−1±i√32⋅1
x=-1±i√32⋅1x=−1±i√32⋅1
Step 1.2.7.2.3.2
Multiply 22 by 11.
x=-1±i√32x=−1±i√32
x=-1±i√32x=−1±i√32
Step 1.2.7.2.4
Simplify the expression to solve for the ++ portion of the ±±.
Step 1.2.7.2.4.1
Simplify the numerator.
Step 1.2.7.2.4.1.1
One to any power is one.
x=-1±√1-4⋅1⋅12⋅1x=−1±√1−4⋅1⋅12⋅1
Step 1.2.7.2.4.1.2
Multiply -4⋅1⋅1−4⋅1⋅1.
Step 1.2.7.2.4.1.2.1
Multiply -4−4 by 11.
x=-1±√1-4⋅12⋅1x=−1±√1−4⋅12⋅1
Step 1.2.7.2.4.1.2.2
Multiply -4−4 by 11.
x=-1±√1-42⋅1x=−1±√1−42⋅1
x=-1±√1-42⋅1x=−1±√1−42⋅1
Step 1.2.7.2.4.1.3
Subtract 44 from 11.
x=-1±√-32⋅1x=−1±√−32⋅1
Step 1.2.7.2.4.1.4
Rewrite -3−3 as -1(3)−1(3).
x=-1±√-1⋅32⋅1x=−1±√−1⋅32⋅1
Step 1.2.7.2.4.1.5
Rewrite √-1(3)√−1(3) as √-1⋅√3√−1⋅√3.
x=-1±√-1⋅√32⋅1x=−1±√−1⋅√32⋅1
Step 1.2.7.2.4.1.6
Rewrite √-1√−1 as ii.
x=-1±i√32⋅1x=−1±i√32⋅1
x=-1±i√32⋅1x=−1±i√32⋅1
Step 1.2.7.2.4.2
Multiply 22 by 11.
x=-1±i√32x=−1±i√32
Step 1.2.7.2.4.3
Change the ±± to ++.
x=-1+i√32x=−1+i√32
Step 1.2.7.2.4.4
Rewrite -1−1 as -1(1)−1(1).
x=-1⋅1+i√32x=−1⋅1+i√32
Step 1.2.7.2.4.5
Factor -1−1 out of i√3i√3.
x=-1⋅1-(-i√3)2x=−1⋅1−(−i√3)2
Step 1.2.7.2.4.6
Factor -1−1 out of -1(1)-(-i√3)−1(1)−(−i√3).
x=-1(1-i√3)2x=−1(1−i√3)2
Step 1.2.7.2.4.7
Move the negative in front of the fraction.
x=-1-i√32x=−1−i√32
x=-1-i√32x=−1−i√32
Step 1.2.7.2.5
Simplify the expression to solve for the -− portion of the ±±.
Step 1.2.7.2.5.1
Simplify the numerator.
Step 1.2.7.2.5.1.1
One to any power is one.
x=-1±√1-4⋅1⋅12⋅1x=−1±√1−4⋅1⋅12⋅1
Step 1.2.7.2.5.1.2
Multiply -4⋅1⋅1−4⋅1⋅1.
Step 1.2.7.2.5.1.2.1
Multiply -4−4 by 11.
x=-1±√1-4⋅12⋅1x=−1±√1−4⋅12⋅1
Step 1.2.7.2.5.1.2.2
Multiply -4−4 by 11.
x=-1±√1-42⋅1x=−1±√1−42⋅1
x=-1±√1-42⋅1x=−1±√1−42⋅1
Step 1.2.7.2.5.1.3
Subtract 44 from 11.
x=-1±√-32⋅1x=−1±√−32⋅1
Step 1.2.7.2.5.1.4
Rewrite -3−3 as -1(3)−1(3).
x=-1±√-1⋅32⋅1x=−1±√−1⋅32⋅1
Step 1.2.7.2.5.1.5
Rewrite √-1(3)√−1(3) as √-1⋅√3√−1⋅√3.
x=-1±√-1⋅√32⋅1x=−1±√−1⋅√32⋅1
Step 1.2.7.2.5.1.6
Rewrite √-1√−1 as ii.
x=-1±i√32⋅1x=−1±i√32⋅1
x=-1±i√32⋅1x=−1±i√32⋅1
Step 1.2.7.2.5.2
Multiply 22 by 11.
x=-1±i√32x=−1±i√32
Step 1.2.7.2.5.3
Change the ±± to -−.
x=-1-i√32x=−1−i√32
Step 1.2.7.2.5.4
Rewrite -1−1 as -1(1)−1(1).
x=-1⋅1-i√32x=−1⋅1−i√32
Step 1.2.7.2.5.5
Factor -1−1 out of -i√3−i√3.
x=-1⋅1-(i√3)2x=−1⋅1−(i√3)2
Step 1.2.7.2.5.6
Factor -1−1 out of -1(1)-(i√3).
x=-1(1+i√3)2
Step 1.2.7.2.5.7
Move the negative in front of the fraction.
x=-1+i√32
x=-1+i√32
Step 1.2.7.2.6
The final answer is the combination of both solutions.
x=-1-i√32,-1+i√32
x=-1-i√32,-1+i√32
x=-1-i√32,-1+i√32
Step 1.2.8
The final solution is all the values that make (x-1)(x2+x+1)=0 true.
x=1,-1-i√32,-1+i√32
x=1,-1-i√32,-1+i√32
Step 1.3
x-intercept(s) in point form.
x-intercept(s): (1,0)
x-intercept(s): (1,0)
Step 2
Step 2.1
To find the y-intercept(s), substitute in 0 for x and solve for y.
y=(0)3-1
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
y=03-1
Step 2.2.2
Remove parentheses.
y=(0)3-1
Step 2.2.3
Simplify (0)3-1.
Step 2.2.3.1
Raising 0 to any positive power yields 0.
y=0-1
Step 2.2.3.2
Subtract 1 from 0.
y=-1
y=-1
y=-1
Step 2.3
y-intercept(s) in point form.
y-intercept(s): (0,-1)
y-intercept(s): (0,-1)
Step 3
List the intersections.
x-intercept(s): (1,0)
y-intercept(s): (0,-1)
Step 4