Examples
f(x)=5x2+3x-7f(x)=5x2+3x−7
Step 1
The minimum of a quadratic function occurs at x=-b2a. If a is positive, the minimum value of the function is f(-b2a).
fminx=ax2+bx+c occurs at x=-b2a
Step 2
Step 2.1
Substitute in the values of a and b.
x=-32(5)
Step 2.2
Remove parentheses.
x=-32(5)
Step 2.3
Multiply 2 by 5.
x=-310
x=-310
Step 3
Step 3.1
Replace the variable x with -310 in the expression.
f(-310)=5(-310)2+3(-310)-7
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.2.1.1.1
Apply the product rule to -310.
f(-310)=5((-1)2(310)2)+3(-310)-7
Step 3.2.1.1.2
Apply the product rule to 310.
f(-310)=5((-1)2(32102))+3(-310)-7
f(-310)=5((-1)2(32102))+3(-310)-7
Step 3.2.1.2
Raise -1 to the power of 2.
f(-310)=5(1(32102))+3(-310)-7
Step 3.2.1.3
Multiply 32102 by 1.
f(-310)=5(32102)+3(-310)-7
Step 3.2.1.4
Raise 3 to the power of 2.
f(-310)=5(9102)+3(-310)-7
Step 3.2.1.5
Raise 10 to the power of 2.
f(-310)=5(9100)+3(-310)-7
Step 3.2.1.6
Cancel the common factor of 5.
Step 3.2.1.6.1
Factor 5 out of 100.
f(-310)=5(95(20))+3(-310)-7
Step 3.2.1.6.2
Cancel the common factor.
f(-310)=5(95⋅20)+3(-310)-7
Step 3.2.1.6.3
Rewrite the expression.
f(-310)=920+3(-310)-7
f(-310)=920+3(-310)-7
Step 3.2.1.7
Multiply 3(-310).
Step 3.2.1.7.1
Multiply -1 by 3.
f(-310)=920-3(310)-7
Step 3.2.1.7.2
Combine -3 and 310.
f(-310)=920+-3⋅310-7
Step 3.2.1.7.3
Multiply -3 by 3.
f(-310)=920+-910-7
f(-310)=920+-910-7
Step 3.2.1.8
Move the negative in front of the fraction.
f(-310)=920-910-7
f(-310)=920-910-7
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Multiply 910 by 22.
f(-310)=920-(910⋅22)-7
Step 3.2.2.2
Multiply 910 by 22.
f(-310)=920-9⋅210⋅2-7
Step 3.2.2.3
Write -7 as a fraction with denominator 1.
f(-310)=920-9⋅210⋅2+-71
Step 3.2.2.4
Multiply -71 by 2020.
f(-310)=920-9⋅210⋅2+-71⋅2020
Step 3.2.2.5
Multiply -71 by 2020.
f(-310)=920-9⋅210⋅2+-7⋅2020
Step 3.2.2.6
Reorder the factors of 10⋅2.
f(-310)=920-9⋅22⋅10+-7⋅2020
Step 3.2.2.7
Multiply 2 by 10.
f(-310)=920-9⋅220+-7⋅2020
f(-310)=920-9⋅220+-7⋅2020
Step 3.2.3
Combine the numerators over the common denominator.
f(-310)=9-9⋅2-7⋅2020
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply -9 by 2.
f(-310)=9-18-7⋅2020
Step 3.2.4.2
Multiply -7 by 20.
f(-310)=9-18-14020
f(-310)=9-18-14020
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract 18 from 9.
f(-310)=-9-14020
Step 3.2.5.2
Subtract 140 from -9.
f(-310)=-14920
Step 3.2.5.3
Move the negative in front of the fraction.
f(-310)=-14920
f(-310)=-14920
Step 3.2.6
The final answer is -14920.
-14920
-14920
-14920
Step 4
Use the x and y values to find where the minimum occurs.
(-310,-14920)
Step 5