Examples

f(x)=-2x2-8
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for -2x2-8.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-2
b=0
c=-8
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=02-2
Step 1.1.3.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.2.1
Cancel the common factor of 0 and 2.
Tap for more steps...
Step 1.1.3.2.1.1
Factor 2 out of 0.
d=2(0)2-2
Step 1.1.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.1.2.1
Factor 2 out of 2-2.
d=2(0)2(-2)
Step 1.1.3.2.1.2.2
Cancel the common factor.
d=202-2
Step 1.1.3.2.1.2.3
Rewrite the expression.
d=0-2
d=0-2
d=0-2
Step 1.1.3.2.2
Cancel the common factor of 0 and -2.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 2 out of 0.
d=2(0)-2
Step 1.1.3.2.2.2
Move the negative one from the denominator of 0-1.
d=-10
d=-10
Step 1.1.3.2.3
Rewrite -10 as -0.
d=-0
Step 1.1.3.2.4
Multiply -1 by 0.
d=0
d=0
d=0
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-8-024-2
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Raising 0 to any positive power yields 0.
e=-8-04-2
Step 1.1.4.2.1.2
Multiply 4 by -2.
e=-8-0-8
Step 1.1.4.2.1.3
Divide 0 by -8.
e=-8-0
Step 1.1.4.2.1.4
Multiply -1 by 0.
e=-8+0
e=-8+0
Step 1.1.4.2.2
Add -8 and 0.
e=-8
e=-8
e=-8
Step 1.1.5
Substitute the values of a, d, and e into the vertex form -2(x+0)2-8.
-2(x+0)2-8
-2(x+0)2-8
Step 1.2
Set y equal to the new right side.
y=-2(x+0)2-8
y=-2(x+0)2-8
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=-2
h=0
k=-8
Step 3
Find the vertex (h,k).
(0,-8)
Step 4
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay