Examples

Determine if Odd, Even, or Neither
f(x)=7x2+5x-4f(x)=7x2+5x4
Step 1
Find f(-x)f(x).
Tap for more steps...
Step 1.1
Find f(-x)f(x) by substituting -xx for all occurrence of xx in f(x)f(x).
f(-x)=7(-x)2+5(-x)-4f(x)=7(x)2+5(x)4
Step 1.2
Simplify each term.
Tap for more steps...
Step 1.2.1
Apply the product rule to -xx.
f(-x)=7((-1)2x2)+5(-x)-4f(x)=7((1)2x2)+5(x)4
Step 1.2.2
Raise -11 to the power of 22.
f(-x)=7(1x2)+5(-x)-4f(x)=7(1x2)+5(x)4
Step 1.2.3
Multiply x2x2 by 11.
f(-x)=7x2+5(-x)-4f(x)=7x2+5(x)4
Step 1.2.4
Multiply -11 by 55.
f(-x)=7x2-5x-4f(x)=7x25x4
f(-x)=7x2-5x-4f(x)=7x25x4
f(-x)=7x2-5x-4f(x)=7x25x4
Step 2
A function is even if f(-x)=f(x)f(x)=f(x).
Tap for more steps...
Step 2.1
Check if f(-x)=f(x)f(x)=f(x).
Step 2.2
Since 7x2-5x-47x25x47x2+5x-47x2+5x4, the function is not even.
The function is not even
The function is not even
Step 3
A function is odd if f(-x)=-f(x)f(x)=f(x).
Tap for more steps...
Step 3.1
Find -f(x)f(x).
Tap for more steps...
Step 3.1.1
Multiply 7x2+5x-47x2+5x4 by -11.
-f(x)=-(7x2+5x-4)f(x)=(7x2+5x4)
Step 3.1.2
Apply the distributive property.
-f(x)=-(7x2)-(5x)+4f(x)=(7x2)(5x)+4
Step 3.1.3
Simplify.
Tap for more steps...
Step 3.1.3.1
Multiply 77 by -11.
-f(x)=-7x2-(5x)+4f(x)=7x2(5x)+4
Step 3.1.3.2
Multiply 55 by -11.
-f(x)=-7x2-5x+4f(x)=7x25x+4
Step 3.1.3.3
Multiply -11 by -44.
-f(x)=-7x2-5x+4f(x)=7x25x+4
-f(x)=-7x2-5x+4f(x)=7x25x+4
-f(x)=-7x2-5x+4f(x)=7x25x+4
Step 3.2
Since 7x2-5x-47x25x4-7x2-5x+47x25x+4, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay