Examples
f(x)=7x2+5x-4f(x)=7x2+5x−4
Step 1
Step 1.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=7(-x)2+5(-x)-4f(−x)=7(−x)2+5(−x)−4
Step 1.2
Simplify each term.
Step 1.2.1
Apply the product rule to -x−x.
f(-x)=7((-1)2x2)+5(-x)-4f(−x)=7((−1)2x2)+5(−x)−4
Step 1.2.2
Raise -1−1 to the power of 22.
f(-x)=7(1x2)+5(-x)-4f(−x)=7(1x2)+5(−x)−4
Step 1.2.3
Multiply x2x2 by 11.
f(-x)=7x2+5(-x)-4f(−x)=7x2+5(−x)−4
Step 1.2.4
Multiply -1−1 by 55.
f(-x)=7x2-5x-4f(−x)=7x2−5x−4
f(-x)=7x2-5x-4f(−x)=7x2−5x−4
f(-x)=7x2-5x-4f(−x)=7x2−5x−4
Step 2
Step 2.1
Check if f(-x)=f(x)f(−x)=f(x).
Step 2.2
Since 7x2-5x-47x2−5x−4≠≠7x2+5x-47x2+5x−4, the function is not even.
The function is not even
The function is not even
Step 3
Step 3.1
Find -f(x)−f(x).
Step 3.1.1
Multiply 7x2+5x-47x2+5x−4 by -1−1.
-f(x)=-(7x2+5x-4)−f(x)=−(7x2+5x−4)
Step 3.1.2
Apply the distributive property.
-f(x)=-(7x2)-(5x)+4−f(x)=−(7x2)−(5x)+4
Step 3.1.3
Simplify.
Step 3.1.3.1
Multiply 77 by -1−1.
-f(x)=-7x2-(5x)+4−f(x)=−7x2−(5x)+4
Step 3.1.3.2
Multiply 55 by -1−1.
-f(x)=-7x2-5x+4−f(x)=−7x2−5x+4
Step 3.1.3.3
Multiply -1−1 by -4−4.
-f(x)=-7x2-5x+4−f(x)=−7x2−5x+4
-f(x)=-7x2-5x+4−f(x)=−7x2−5x+4
-f(x)=-7x2-5x+4−f(x)=−7x2−5x+4
Step 3.2
Since 7x2-5x-47x2−5x−4≠≠-7x2-5x+4−7x2−5x+4, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5