Examples

Evaluate the Difference Quotient
f(x)=x2f(x)=x2 , x=0x=0
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)hf(x+h)f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+hx=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable xx with x+hx+h in the expression.
f(x+h)=(x+h)2f(x+h)=(x+h)2
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Rewrite (x+h)2(x+h)2 as (x+h)(x+h)(x+h)(x+h).
f(x+h)=(x+h)(x+h)f(x+h)=(x+h)(x+h)
Step 2.1.2.2
Expand (x+h)(x+h)(x+h)(x+h) using the FOIL Method.
Tap for more steps...
Step 2.1.2.2.1
Apply the distributive property.
f(x+h)=x(x+h)+h(x+h)f(x+h)=x(x+h)+h(x+h)
Step 2.1.2.2.2
Apply the distributive property.
f(x+h)=xx+xh+h(x+h)f(x+h)=xx+xh+h(x+h)
Step 2.1.2.2.3
Apply the distributive property.
f(x+h)=xx+xh+hx+hhf(x+h)=xx+xh+hx+hh
f(x+h)=xx+xh+hx+hhf(x+h)=xx+xh+hx+hh
Step 2.1.2.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.3.1.1
Multiply xx by xx.
f(x+h)=x2+xh+hx+hhf(x+h)=x2+xh+hx+hh
Step 2.1.2.3.1.2
Multiply hh by hh.
f(x+h)=x2+xh+hx+h2f(x+h)=x2+xh+hx+h2
f(x+h)=x2+xh+hx+h2f(x+h)=x2+xh+hx+h2
Step 2.1.2.3.2
Add xhxh and hxhx.
Tap for more steps...
Step 2.1.2.3.2.1
Reorder xx and hh.
f(x+h)=x2+hx+hx+h2f(x+h)=x2+hx+hx+h2
Step 2.1.2.3.2.2
Add hxhx and hxhx.
f(x+h)=x2+2hx+h2f(x+h)=x2+2hx+h2
f(x+h)=x2+2hx+h2f(x+h)=x2+2hx+h2
f(x+h)=x2+2hx+h2f(x+h)=x2+2hx+h2
Step 2.1.2.4
The final answer is x2+2hx+h2x2+2hx+h2.
x2+2hx+h2x2+2hx+h2
x2+2hx+h2x2+2hx+h2
x2+2hx+h2x2+2hx+h2
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move x2x2.
2hx+h2+x22hx+h2+x2
Step 2.2.2
Reorder 2hx2hx and h2h2.
h2+2hx+x2h2+2hx+x2
h2+2hx+x2h2+2hx+x2
Step 2.3
Find the components of the definition.
f(x+h)=h2+2hx+x2f(x+h)=h2+2hx+x2
f(x)=x2f(x)=x2
f(x+h)=h2+2hx+x2f(x+h)=h2+2hx+x2
f(x)=x2f(x)=x2
Step 3
Plug in the components.
f(x+h)-f(x)h=h2+2hx+x2-(x2)hf(x+h)f(x)h=h2+2hx+x2(x2)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Subtract x2x2 from x2x2.
h2+2hx+0hh2+2hx+0h
Step 4.1.2
Add h2+2hxh2+2hx and 00.
h2+2hxhh2+2hxh
Step 4.1.3
Factor hh out of h2+2hxh2+2hx.
Tap for more steps...
Step 4.1.3.1
Factor hh out of h2h2.
hh+2hxhhh+2hxh
Step 4.1.3.2
Factor hh out of 2hx2hx.
h(h)+h(2x)hh(h)+h(2x)h
Step 4.1.3.3
Factor hh out of h(h)+h(2x)h(h)+h(2x).
h(h+2x)hh(h+2x)h
h(h+2x)hh(h+2x)h
h(h+2x)hh(h+2x)h
Step 4.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.1
Cancel the common factor of hh.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
h(h+2x)h
Step 4.2.1.2
Divide h+2x by 1.
h+2x
h+2x
Step 4.2.2
Reorder h and 2x.
2x+h
2x+h
2x+h
Step 5
Replace the variable x with 0 in the expression.
2(0)+h
Step 6
Multiply 2 by 0.
0+h
Step 7
Add 0 and h.
h
Step 8
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay