Basic Math Examples
h=3l=4w=8h=3l=4w=8
Step 1
The surface area of a pyramid is equal to the sum of the areas of each side of the pyramid. The base of the pyramid has area lw, and sl and sw represent the slant height on the length and slant height on the width.
(length)⋅(width)+(width)⋅sl+(length)⋅sw
Step 2
Substitute the values of the length l=4, the width w=8, and the height h=3 into the formula for surface area of a pyramid.
4⋅8+8⋅√(42)2+(3)2+4⋅√(82)2+(3)2
Step 3
Step 3.1
Multiply 4 by 8.
32+8⋅√(42)2+(3)2+4⋅√(82)2+(3)2
Step 3.2
Divide 4 by 2.
32+8⋅√22+(3)2+4⋅√(82)2+(3)2
Step 3.3
Raise 2 to the power of 2.
32+8⋅√4+(3)2+4⋅√(82)2+(3)2
Step 3.4
Raise 3 to the power of 2.
32+8⋅√4+9+4⋅√(82)2+(3)2
Step 3.5
Add 4 and 9.
32+8⋅√13+4⋅√(82)2+(3)2
Step 3.6
Divide 8 by 2.
32+8√13+4⋅√42+(3)2
Step 3.7
Raise 4 to the power of 2.
32+8√13+4⋅√16+(3)2
Step 3.8
Raise 3 to the power of 2.
32+8√13+4⋅√16+9
Step 3.9
Add 16 and 9.
32+8√13+4⋅√25
Step 3.10
Rewrite 25 as 52.
32+8√13+4⋅√52
Step 3.11
Pull terms out from under the radical, assuming positive real numbers.
32+8√13+4⋅5
Step 3.12
Multiply 4 by 5.
32+8√13+20
32+8√13+20
Step 4
Add 32 and 20.
52+8√13
Step 5
Calculate the approximate solution to 4 decimal places.
80.8444