Algebra Examples
[679]=[3a+2b+c7a+b-c9a-b-c]⎡⎢⎣679⎤⎥⎦=⎡⎢⎣3a+2b+c7a+b−c9a−b−c⎤⎥⎦
Step 1
The matrix equation can be written as a set of equations.
6=3a+2b+c6=3a+2b+c
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
Step 2
Step 2.1
Rewrite the equation as 3a+2b+c=63a+2b+c=6.
3a+2b+c=63a+2b+c=6
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
Step 2.2
Move all terms not containing cc to the right side of the equation.
Step 2.2.1
Subtract 3a3a from both sides of the equation.
2b+c=6-3a2b+c=6−3a
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
Step 2.2.2
Subtract 2b2b from both sides of the equation.
c=6-3a-2bc=6−3a−2b
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
c=6-3a-2bc=6−3a−2b
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
c=6-3a-2bc=6−3a−2b
7=7a+b-c7=7a+b−c
9=9a-b-c9=9a−b−c
Step 3
Step 3.1
Replace all occurrences of cc in 7=7a+b-c7=7a+b−c with 6-3a-2b6−3a−2b.
7=7a+b-(6-3a-2b)7=7a+b−(6−3a−2b)
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify 7a+b-(6-3a-2b)7a+b−(6−3a−2b).
Step 3.2.1.1
Simplify each term.
Step 3.2.1.1.1
Apply the distributive property.
7=7a+b-1⋅6-(-3a)-(-2b)7=7a+b−1⋅6−(−3a)−(−2b)
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2.1.1.2
Simplify.
Step 3.2.1.1.2.1
Multiply -1−1 by 66.
7=7a+b-6-(-3a)-(-2b)7=7a+b−6−(−3a)−(−2b)
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2.1.1.2.2
Multiply -3−3 by -1−1.
7=7a+b-6+3a-(-2b)7=7a+b−6+3a−(−2b)
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2.1.1.2.3
Multiply -2−2 by -1−1.
7=7a+b-6+3a+2b7=7a+b−6+3a+2b
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
7=7a+b-6+3a+2b7=7a+b−6+3a+2b
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
7=7a+b-6+3a+2b7=7a+b−6+3a+2b
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2.1.2
Simplify by adding terms.
Step 3.2.1.2.1
Add 7a7a and 3a3a.
7=10a+b-6+2b7=10a+b−6+2b
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.2.1.2.2
Add bb and 2b2b.
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-c9=9a−b−c
Step 3.3
Replace all occurrences of cc in 9=9a-b-c9=9a−b−c with 6-3a-2b6−3a−2b.
9=9a-b-(6-3a-2b)9=9a−b−(6−3a−2b)
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4
Simplify the right side.
Step 3.4.1
Simplify 9a-b-(6-3a-2b)9a−b−(6−3a−2b).
Step 3.4.1.1
Simplify each term.
Step 3.4.1.1.1
Apply the distributive property.
9=9a-b-1⋅6-(-3a)-(-2b)9=9a−b−1⋅6−(−3a)−(−2b)
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4.1.1.2
Simplify.
Step 3.4.1.1.2.1
Multiply -1−1 by 66.
9=9a-b-6-(-3a)-(-2b)9=9a−b−6−(−3a)−(−2b)
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4.1.1.2.2
Multiply -3−3 by -1−1.
9=9a-b-6+3a-(-2b)9=9a−b−6+3a−(−2b)
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4.1.1.2.3
Multiply -2−2 by -1−1.
9=9a-b-6+3a+2b9=9a−b−6+3a+2b
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-6+3a+2b9=9a−b−6+3a+2b
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=9a-b-6+3a+2b9=9a−b−6+3a+2b
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4.1.2
Simplify by adding terms.
Step 3.4.1.2.1
Add 9a9a and 3a3a.
9=12a-b-6+2b9=12a−b−6+2b
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 3.4.1.2.2
Add -b−b and 2b2b.
9=12a+b-69=12a+b−6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=12a+b-69=12a+b−6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=12a+b-69=12a+b−6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=12a+b-69=12a+b−6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
9=12a+b-69=12a+b−6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 4
Step 4.1
Rewrite the equation as 12a+b-6=912a+b−6=9.
12a+b-6=912a+b−6=9
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 4.2
Move all terms not containing bb to the right side of the equation.
Step 4.2.1
Subtract 12a12a from both sides of the equation.
b-6=9-12ab−6=9−12a
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 4.2.2
Add 66 to both sides of the equation.
b=9-12a+6b=9−12a+6
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 4.2.3
Add 99 and 66.
b=-12a+15b=−12a+15
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
b=-12a+15b=−12a+15
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
b=-12a+15b=−12a+15
7=10a+3b-67=10a+3b−6
c=6-3a-2bc=6−3a−2b
Step 5
Step 5.1
Replace all occurrences of bb in 7=10a+3b-67=10a+3b−6 with -12a+15−12a+15.
7=10a+3(-12a+15)-67=10a+3(−12a+15)−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify 10a+3(-12a+15)-610a+3(−12a+15)−6.
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Apply the distributive property.
7=10a+3(-12a)+3⋅15-67=10a+3(−12a)+3⋅15−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.2.1.1.2
Multiply -12−12 by 33.
7=10a-36a+3⋅15-67=10a−36a+3⋅15−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.2.1.1.3
Multiply 33 by 1515.
7=10a-36a+45-67=10a−36a+45−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
7=10a-36a+45-67=10a−36a+45−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.2.1.2
Simplify by adding terms.
Step 5.2.1.2.1
Subtract 36a36a from 10a10a.
7=-26a+45-67=−26a+45−6
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.2.1.2.2
Subtract 66 from 4545.
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=6-3a-2bc=6−3a−2b
Step 5.3
Replace all occurrences of bb in c=6-3a-2bc=6−3a−2b with -12a+15−12a+15.
c=6-3a-2(-12a+15)c=6−3a−2(−12a+15)
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 5.4
Simplify the right side.
Step 5.4.1
Simplify 6-3a-2(-12a+15)6−3a−2(−12a+15).
Step 5.4.1.1
Simplify each term.
Step 5.4.1.1.1
Apply the distributive property.
c=6-3a-2(-12a)-2⋅15c=6−3a−2(−12a)−2⋅15
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 5.4.1.1.2
Multiply -12−12 by -2−2.
c=6-3a+24a-2⋅15c=6−3a+24a−2⋅15
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 5.4.1.1.3
Multiply -2−2 by 1515.
c=6-3a+24a-30c=6−3a+24a−30
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=6-3a+24a-30c=6−3a+24a−30
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 5.4.1.2
Simplify by adding terms.
Step 5.4.1.2.1
Subtract 3030 from 66.
c=-3a+24a-24c=−3a+24a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 5.4.1.2.2
Add -3a−3a and 24a24a.
c=21a-24c=21a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=21a-24c=21a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=21a-24c=21a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=21a-24c=21a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
c=21a-24c=21a−24
7=-26a+397=−26a+39
b=-12a+15b=−12a+15
Step 6
Step 6.1
Rewrite the equation as -26a+39=7−26a+39=7.
-26a+39=7−26a+39=7
c=21a-24c=21a−24
b=-12a+15b=−12a+15
Step 6.2
Move all terms not containing aa to the right side of the equation.
Step 6.2.1
Subtract 3939 from both sides of the equation.
-26a=7-39−26a=7−39
c=21a-24c=21a−24
b=-12a+15b=−12a+15
Step 6.2.2
Subtract 3939 from 77.
-26a=-32−26a=−32
c=21a-24c=21a−24
b=-12a+15b=−12a+15
-26a=-32−26a=−32
c=21a-24c=21a−24
b=-12a+15b=−12a+15
Step 6.3
Divide each term in -26a=-32−26a=−32 by -26−26 and simplify.
Step 6.3.1
Divide each term in -26a=-32−26a=−32 by -26−26.
-26a-26=-32-26−26a−26=−32−26
c=21a-24c=21a−24
b=-12a+15b=−12a+15
Step 6.3.2
Simplify the left side.
Step 6.3.2.1
Cancel the common factor of -26−26.
Step 6.3.2.1.1
Cancel the common factor.
-26a-26=-32-26
c=21a-24
b=-12a+15
Step 6.3.2.1.2
Divide a by 1.
a=-32-26
c=21a-24
b=-12a+15
a=-32-26
c=21a-24
b=-12a+15
a=-32-26
c=21a-24
b=-12a+15
Step 6.3.3
Simplify the right side.
Step 6.3.3.1
Cancel the common factor of -32 and -26.
Step 6.3.3.1.1
Factor -2 out of -32.
a=-2⋅16-26
c=21a-24
b=-12a+15
Step 6.3.3.1.2
Cancel the common factors.
Step 6.3.3.1.2.1
Factor -2 out of -26.
a=-2⋅16-2⋅13
c=21a-24
b=-12a+15
Step 6.3.3.1.2.2
Cancel the common factor.
a=-2⋅16-2⋅13
c=21a-24
b=-12a+15
Step 6.3.3.1.2.3
Rewrite the expression.
a=1613
c=21a-24
b=-12a+15
a=1613
c=21a-24
b=-12a+15
a=1613
c=21a-24
b=-12a+15
a=1613
c=21a-24
b=-12a+15
a=1613
c=21a-24
b=-12a+15
a=1613
c=21a-24
b=-12a+15
Step 7
Step 7.1
Replace all occurrences of a in c=21a-24 with 1613.
c=21(1613)-24
a=1613
b=-12a+15
Step 7.2
Simplify the right side.
Step 7.2.1
Simplify 21(1613)-24.
Step 7.2.1.1
Multiply 21(1613).
Step 7.2.1.1.1
Combine 21 and 1613.
c=21⋅1613-24
a=1613
b=-12a+15
Step 7.2.1.1.2
Multiply 21 by 16.
c=33613-24
a=1613
b=-12a+15
c=33613-24
a=1613
b=-12a+15
Step 7.2.1.2
To write -24 as a fraction with a common denominator, multiply by 1313.
c=33613-24⋅1313
a=1613
b=-12a+15
Step 7.2.1.3
Combine -24 and 1313.
c=33613+-24⋅1313
a=1613
b=-12a+15
Step 7.2.1.4
Combine the numerators over the common denominator.
c=336-24⋅1313
a=1613
b=-12a+15
Step 7.2.1.5
Simplify the numerator.
Step 7.2.1.5.1
Multiply -24 by 13.
c=336-31213
a=1613
b=-12a+15
Step 7.2.1.5.2
Subtract 312 from 336.
c=2413
a=1613
b=-12a+15
c=2413
a=1613
b=-12a+15
c=2413
a=1613
b=-12a+15
c=2413
a=1613
b=-12a+15
Step 7.3
Replace all occurrences of a in b=-12a+15 with 1613.
b=-12(1613)+15
c=2413
a=1613
Step 7.4
Simplify the right side.
Step 7.4.1
Simplify -12(1613)+15.
Step 7.4.1.1
Simplify each term.
Step 7.4.1.1.1
Multiply -12(1613).
Step 7.4.1.1.1.1
Combine -12 and 1613.
b=-12⋅1613+15
c=2413
a=1613
Step 7.4.1.1.1.2
Multiply -12 by 16.
b=-19213+15
c=2413
a=1613
b=-19213+15
c=2413
a=1613
Step 7.4.1.1.2
Move the negative in front of the fraction.
b=-19213+15
c=2413
a=1613
b=-19213+15
c=2413
a=1613
Step 7.4.1.2
To write 15 as a fraction with a common denominator, multiply by 1313.
b=-19213+15⋅1313
c=2413
a=1613
Step 7.4.1.3
Combine 15 and 1313.
b=-19213+15⋅1313
c=2413
a=1613
Step 7.4.1.4
Combine the numerators over the common denominator.
b=-192+15⋅1313
c=2413
a=1613
Step 7.4.1.5
Simplify the numerator.
Step 7.4.1.5.1
Multiply 15 by 13.
b=-192+19513
c=2413
a=1613
Step 7.4.1.5.2
Add -192 and 195.
b=313
c=2413
a=1613
b=313
c=2413
a=1613
b=313
c=2413
a=1613
b=313
c=2413
a=1613
b=313
c=2413
a=1613
Step 8
List all of the solutions.
b=313,c=2413,a=1613