Algebra Examples
xq(x)129162288128318
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+b.
y=ax+b
Step 1.2
Build a set of equations from the table such that q(x)=ax+b.
2=a(1)+b162=a(9)+b8=a(2)+b128=a(8)+b18=a(3)+b
Step 1.3
Calculate the values of a and b.
Step 1.3.1
Solve for a in 2=a+b.
Step 1.3.1.1
Rewrite the equation as a+b=2.
a+b=2
162=a(9)+b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.1.2
Subtract b from both sides of the equation.
a=2-b
162=a(9)+b
8=a(2)+b
128=a(8)+b
18=a(3)+b
a=2-b
162=a(9)+b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2
Replace all occurrences of a with 2-b in each equation.
Step 1.3.2.1
Replace all occurrences of a in 162=a(9)+b with 2-b.
162=(2-b)(9)+b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify (2-b)(9)+b.
Step 1.3.2.2.1.1
Simplify each term.
Step 1.3.2.2.1.1.1
Apply the distributive property.
162=2⋅9-b⋅9+b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2.2.1.1.2
Multiply 2 by 9.
162=18-b⋅9+b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2.2.1.1.3
Multiply 9 by -1.
162=18-9b+b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
162=18-9b+b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2.2.1.2
Add -9b and b.
162=18-8b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
162=18-8b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
162=18-8b
a=2-b
8=a(2)+b
128=a(8)+b
18=a(3)+b
Step 1.3.2.3
Replace all occurrences of a in 8=a(2)+b with 2-b.
8=(2-b)(2)+b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
Step 1.3.2.4
Simplify the right side.
Step 1.3.2.4.1
Simplify (2-b)(2)+b.
Step 1.3.2.4.1.1
Simplify each term.
Step 1.3.2.4.1.1.1
Apply the distributive property.
8=2⋅2-b⋅2+b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
Step 1.3.2.4.1.1.2
Multiply 2 by 2.
8=4-b⋅2+b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
Step 1.3.2.4.1.1.3
Multiply 2 by -1.
8=4-2b+b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
8=4-2b+b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
Step 1.3.2.4.1.2
Add -2b and b.
8=4-b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
8=4-b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
8=4-b
162=18-8b
a=2-b
128=a(8)+b
18=a(3)+b
Step 1.3.2.5
Replace all occurrences of a in 128=a(8)+b with 2-b.
128=(2-b)(8)+b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
Step 1.3.2.6
Simplify the right side.
Step 1.3.2.6.1
Simplify (2-b)(8)+b.
Step 1.3.2.6.1.1
Simplify each term.
Step 1.3.2.6.1.1.1
Apply the distributive property.
128=2⋅8-b⋅8+b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
Step 1.3.2.6.1.1.2
Multiply 2 by 8.
128=16-b⋅8+b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
Step 1.3.2.6.1.1.3
Multiply 8 by -1.
128=16-8b+b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
128=16-8b+b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
Step 1.3.2.6.1.2
Add -8b and b.
128=16-7b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=a(3)+b
Step 1.3.2.7
Replace all occurrences of a in 18=a(3)+b with 2-b.
18=(2-b)(3)+b
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.2.8
Simplify the right side.
Step 1.3.2.8.1
Simplify (2-b)(3)+b.
Step 1.3.2.8.1.1
Simplify each term.
Step 1.3.2.8.1.1.1
Apply the distributive property.
18=2⋅3-b⋅3+b
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.2.8.1.1.2
Multiply 2 by 3.
18=6-b⋅3+b
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.2.8.1.1.3
Multiply 3 by -1.
18=6-3b+b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=6-3b+b
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.2.8.1.2
Add -3b and b.
18=6-2b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=6-2b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=6-2b
128=16-7b
8=4-b
162=18-8b
a=2-b
18=6-2b
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3
Solve for b in 18=6-2b.
Step 1.3.3.1
Rewrite the equation as 6-2b=18.
6-2b=18
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.2
Move all terms not containing b to the right side of the equation.
Step 1.3.3.2.1
Subtract 6 from both sides of the equation.
-2b=18-6
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.2.2
Subtract 6 from 18.
-2b=12
128=16-7b
8=4-b
162=18-8b
a=2-b
-2b=12
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.3
Divide each term in -2b=12 by -2 and simplify.
Step 1.3.3.3.1
Divide each term in -2b=12 by -2.
-2b-2=12-2
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of -2.
Step 1.3.3.3.2.1.1
Cancel the common factor.
-2b-2=12-2
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.3.2.1.2
Divide b by 1.
b=12-2
128=16-7b
8=4-b
162=18-8b
a=2-b
b=12-2
128=16-7b
8=4-b
162=18-8b
a=2-b
b=12-2
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide 12 by -2.
b=-6
128=16-7b
8=4-b
162=18-8b
a=2-b
b=-6
128=16-7b
8=4-b
162=18-8b
a=2-b
b=-6
128=16-7b
8=4-b
162=18-8b
a=2-b
b=-6
128=16-7b
8=4-b
162=18-8b
a=2-b
Step 1.3.4
Replace all occurrences of b with -6 in each equation.
Step 1.3.4.1
Replace all occurrences of b in 128=16-7b with -6.
128=16-7⋅-6
b=-6
8=4-b
162=18-8b
a=2-b
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify 16-7⋅-6.
Step 1.3.4.2.1.1
Multiply -7 by -6.
128=16+42
b=-6
8=4-b
162=18-8b
a=2-b
Step 1.3.4.2.1.2
Add 16 and 42.
128=58
b=-6
8=4-b
162=18-8b
a=2-b
128=58
b=-6
8=4-b
162=18-8b
a=2-b
128=58
b=-6
8=4-b
162=18-8b
a=2-b
Step 1.3.4.3
Replace all occurrences of b in 8=4-b with -6.
8=4-(-6)
128=58
b=-6
162=18-8b
a=2-b
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify 4-(-6).
Step 1.3.4.4.1.1
Multiply -1 by -6.
8=4+6
128=58
b=-6
162=18-8b
a=2-b
Step 1.3.4.4.1.2
Add 4 and 6.
8=10
128=58
b=-6
162=18-8b
a=2-b
8=10
128=58
b=-6
162=18-8b
a=2-b
8=10
128=58
b=-6
162=18-8b
a=2-b
Step 1.3.4.5
Replace all occurrences of b in 162=18-8b with -6.
162=18-8⋅-6
8=10
128=58
b=-6
a=2-b
Step 1.3.4.6
Simplify the right side.
Step 1.3.4.6.1
Simplify 18-8⋅-6.
Step 1.3.4.6.1.1
Multiply -8 by -6.
162=18+48
8=10
128=58
b=-6
a=2-b
Step 1.3.4.6.1.2
Add 18 and 48.
162=66
8=10
128=58
b=-6
a=2-b
162=66
8=10
128=58
b=-6
a=2-b
162=66
8=10
128=58
b=-6
a=2-b
Step 1.3.4.7
Replace all occurrences of b in a=2-b with -6.
a=2-(-6)
162=66
8=10
128=58
b=-6
Step 1.3.4.8
Simplify the right side.
Step 1.3.4.8.1
Simplify 2-(-6).
Step 1.3.4.8.1.1
Multiply -1 by -6.
a=2+6
162=66
8=10
128=58
b=-6
Step 1.3.4.8.1.2
Add 2 and 6.
a=8
162=66
8=10
128=58
b=-6
a=8
162=66
8=10
128=58
b=-6
a=8
162=66
8=10
128=58
b=-6
a=8
162=66
8=10
128=58
b=-6
Step 1.3.5
Since 162=66 is not true, there is no solution.
No solution
No solution
Step 1.4
Since y≠q(x) for the corresponding x values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form y=ax2+bx+c.
y=ax2+bx+c
Step 2.2
Build a set of 3 equations from the table such that q(x)=ax2+bx+c.
Step 2.3
Calculate the values of a, b, and c.
Step 2.3.1
Solve for a in 2=a+b+c.
Step 2.3.1.1
Rewrite the equation as a+b+c=2.
a+b+c=2
162=a⋅92+b(9)+c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.1.2
Move all terms not containing a to the right side of the equation.
Step 2.3.1.2.1
Subtract b from both sides of the equation.
a+c=2-b
162=a⋅92+b(9)+c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.1.2.2
Subtract c from both sides of the equation.
a=2-b-c
162=a⋅92+b(9)+c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
a=2-b-c
162=a⋅92+b(9)+c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
a=2-b-c
162=a⋅92+b(9)+c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2
Replace all occurrences of a with 2-b-c in each equation.
Step 2.3.2.1
Replace all occurrences of a in 162=a⋅92+b(9)+c with 2-b-c.
162=(2-b-c)⋅92+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify (2-b-c)⋅92+b(9)+c.
Step 2.3.2.2.1.1
Simplify each term.
Step 2.3.2.2.1.1.1
Raise 9 to the power of 2.
162=(2-b-c)⋅81+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.1.2
Apply the distributive property.
162=2⋅81-b⋅81-c⋅81+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.1.3
Simplify.
Step 2.3.2.2.1.1.3.1
Multiply 2 by 81.
162=162-b⋅81-c⋅81+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.1.3.2
Multiply 81 by -1.
162=162-81b-c⋅81+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.1.3.3
Multiply 81 by -1.
162=162-81b-81c+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
162=162-81b-81c+b(9)+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.1.4
Move 9 to the left of b.
162=162-81b-81c+9b+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
162=162-81b-81c+9b+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.1.2.1
Add -81b and 9b.
162=162-72b-81c+c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.2.1.2.2
Add -81c and c.
162=162-72b-80c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
162=162-72b-80c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
162=162-72b-80c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
162=162-72b-80c
a=2-b-c
8=a⋅22+b(2)+c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.3
Replace all occurrences of a in 8=a⋅22+b(2)+c with 2-b-c.
8=(2-b-c)⋅22+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4
Simplify the right side.
Step 2.3.2.4.1
Simplify (2-b-c)⋅22+b(2)+c.
Step 2.3.2.4.1.1
Simplify each term.
Step 2.3.2.4.1.1.1
Raise 2 to the power of 2.
8=(2-b-c)⋅4+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.1.2
Apply the distributive property.
8=2⋅4-b⋅4-c⋅4+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.1.3
Simplify.
Step 2.3.2.4.1.1.3.1
Multiply 2 by 4.
8=8-b⋅4-c⋅4+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.1.3.2
Multiply 4 by -1.
8=8-4b-c⋅4+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.1.3.3
Multiply 4 by -1.
8=8-4b-4c+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
8=8-4b-4c+b(2)+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.1.4
Move 2 to the left of b.
8=8-4b-4c+2b+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
8=8-4b-4c+2b+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.2
Simplify by adding terms.
Step 2.3.2.4.1.2.1
Add -4b and 2b.
8=8-2b-4c+c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.4.1.2.2
Add -4c and c.
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=a⋅82+b(8)+c
18=a⋅32+b(3)+c
Step 2.3.2.5
Replace all occurrences of a in 128=a⋅82+b(8)+c with 2-b-c.
128=(2-b-c)⋅82+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6
Simplify the right side.
Step 2.3.2.6.1
Simplify (2-b-c)⋅82+b(8)+c.
Step 2.3.2.6.1.1
Simplify each term.
Step 2.3.2.6.1.1.1
Raise 8 to the power of 2.
128=(2-b-c)⋅64+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.1.2
Apply the distributive property.
128=2⋅64-b⋅64-c⋅64+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.1.3
Simplify.
Step 2.3.2.6.1.1.3.1
Multiply 2 by 64.
128=128-b⋅64-c⋅64+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.1.3.2
Multiply 64 by -1.
128=128-64b-c⋅64+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.1.3.3
Multiply 64 by -1.
128=128-64b-64c+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
128=128-64b-64c+b(8)+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.1.4
Move 8 to the left of b.
128=128-64b-64c+8b+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
128=128-64b-64c+8b+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.2
Simplify by adding terms.
Step 2.3.2.6.1.2.1
Add -64b and 8b.
128=128-56b-64c+c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.6.1.2.2
Add -64c and c.
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=a⋅32+b(3)+c
Step 2.3.2.7
Replace all occurrences of a in 18=a⋅32+b(3)+c with 2-b-c.
18=(2-b-c)⋅32+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8
Simplify the right side.
Step 2.3.2.8.1
Simplify (2-b-c)⋅32+b(3)+c.
Step 2.3.2.8.1.1
Simplify each term.
Step 2.3.2.8.1.1.1
Raise 3 to the power of 2.
18=(2-b-c)⋅9+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.1.2
Apply the distributive property.
18=2⋅9-b⋅9-c⋅9+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.1.3
Simplify.
Step 2.3.2.8.1.1.3.1
Multiply 2 by 9.
18=18-b⋅9-c⋅9+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.1.3.2
Multiply 9 by -1.
18=18-9b-c⋅9+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.1.3.3
Multiply 9 by -1.
18=18-9b-9c+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-9b-9c+b(3)+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.1.4
Move 3 to the left of b.
18=18-9b-9c+3b+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-9b-9c+3b+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.2
Simplify by adding terms.
Step 2.3.2.8.1.2.1
Add -9b and 3b.
18=18-6b-9c+c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.2.8.1.2.2
Add -9c and c.
18=18-6b-8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-6b-8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-6b-8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-6b-8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
18=18-6b-8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3
Solve for b in 18=18-6b-8c.
Step 2.3.3.1
Rewrite the equation as 18-6b-8c=18.
18-6b-8c=18
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.2
Move all terms not containing b to the right side of the equation.
Step 2.3.3.2.1
Subtract 18 from both sides of the equation.
-6b-8c=18-18
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.2.2
Add 8c to both sides of the equation.
-6b=18-18+8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.2.3
Subtract 18 from 18.
-6b=0+8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.2.4
Add 0 and 8c.
-6b=8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
-6b=8c
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3
Divide each term in -6b=8c by -6 and simplify.
Step 2.3.3.3.1
Divide each term in -6b=8c by -6.
-6b-6=8c-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of -6.
Step 2.3.3.3.2.1.1
Cancel the common factor.
-6b-6=8c-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.2.1.2
Divide b by 1.
b=8c-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=8c-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=8c-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Cancel the common factor of 8 and -6.
Step 2.3.3.3.3.1.1
Factor 2 out of 8c.
b=2(4c)-6
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.3.1.2
Cancel the common factors.
Step 2.3.3.3.3.1.2.1
Factor 2 out of -6.
b=2(4c)2(-3)
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.3.1.2.2
Cancel the common factor.
b=2(4c)2⋅-3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.3.1.2.3
Rewrite the expression.
b=4c-3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=4c-3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=4c-3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.3.3.3.2
Move the negative in front of the fraction.
b=-4c3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=-4c3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=-4c3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
b=-4c3
128=128-56b-63c
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4
Replace all occurrences of b with -4c3 in each equation.
Step 2.3.4.1
Replace all occurrences of b in 128=128-56b-63c with -4c3.
128=128-56(-4c3)-63c
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify 128-56(-4c3)-63c.
Step 2.3.4.2.1.1
Multiply -56(-4c3).
Step 2.3.4.2.1.1.1
Multiply -1 by -56.
128=128+56(4c3)-63c
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.1.2
Combine 56 and 4c3.
128=128+56(4c)3-63c
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.1.3
Multiply 4 by 56.
128=128+224c3-63c
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+224c3-63c
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.2
To write -63c as a fraction with a common denominator, multiply by 33.
128=128+224c3-63c⋅33
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.3
Simplify terms.
Step 2.3.4.2.1.3.1
Combine -63c and 33.
128=128+224c3+-63c⋅33
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.3.2
Combine the numerators over the common denominator.
128=128+224c-63c⋅33
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+224c-63c⋅33
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4
Simplify the numerator.
Step 2.3.4.2.1.4.1
Factor 7c out of 224c-63c⋅3.
Step 2.3.4.2.1.4.1.1
Factor 7c out of 224c.
128=128+7c(32)-63c⋅33
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4.1.2
Factor 7c out of -63c⋅3.
128=128+7c(32)+7c(-9⋅3)3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4.1.3
Factor 7c out of 7c(32)+7c(-9⋅3).
128=128+7c(32-9⋅3)3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+7c(32-9⋅3)3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4.2
Multiply -9 by 3.
128=128+7c(32-27)3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4.3
Subtract 27 from 32.
128=128+7c⋅53
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.2.1.4.4
Multiply 5 by 7.
128=128+35c3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+35c3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+35c3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
128=128+35c3
b=-4c3
8=8-2b-3c
162=162-72b-80c
a=2-b-c
Step 2.3.4.3
Replace all occurrences of b in 8=8-2b-3c with -4c3.
8=8-2(-4c3)-3c
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify 8-2(-4c3)-3c.
Step 2.3.4.4.1.1
Multiply -2(-4c3).
Step 2.3.4.4.1.1.1
Multiply -1 by -2.
8=8+2(4c3)-3c
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.1.2
Combine 2 and 4c3.
8=8+2(4c)3-3c
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.1.3
Multiply 4 by 2.
8=8+8c3-3c
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8+8c3-3c
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.2
To write -3c as a fraction with a common denominator, multiply by 33.
8=8+8c3-3c⋅33
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.3
Simplify terms.
Step 2.3.4.4.1.3.1
Combine -3c and 33.
8=8+8c3+-3c⋅33
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.3.2
Combine the numerators over the common denominator.
8=8+8c-3c⋅33
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8+8c-3c⋅33
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4
Simplify each term.
Step 2.3.4.4.1.4.1
Simplify the numerator.
Step 2.3.4.4.1.4.1.1
Factor c out of 8c-3c⋅3.
Step 2.3.4.4.1.4.1.1.1
Factor c out of 8c.
8=8+c⋅8-3c⋅33
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.1.1.2
Factor c out of -3c⋅3.
8=8+c⋅8+c(-3⋅3)3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.1.1.3
Factor c out of c⋅8+c(-3⋅3).
8=8+c(8-3⋅3)3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8+c(8-3⋅3)3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.1.2
Multiply -3 by 3.
8=8+c(8-9)3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.1.3
Subtract 9 from 8.
8=8+c⋅-13
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8+c⋅-13
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.2
Move -1 to the left of c.
8=8+-1⋅c3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.4.1.4.3
Move the negative in front of the fraction.
8=8-c3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8-c3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8-c3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
8=8-c3
128=128+35c3
b=-4c3
162=162-72b-80c
a=2-b-c
Step 2.3.4.5
Replace all occurrences of b in 162=162-72b-80c with -4c3.
162=162-72(-4c3)-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6
Simplify the right side.
Step 2.3.4.6.1
Simplify 162-72(-4c3)-80c.
Step 2.3.4.6.1.1
Simplify each term.
Step 2.3.4.6.1.1.1
Cancel the common factor of 3.
Step 2.3.4.6.1.1.1.1
Move the leading negative in -4c3 into the numerator.
162=162-72-4c3-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6.1.1.1.2
Factor 3 out of -72.
162=162+3(-24)(-4c3)-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6.1.1.1.3
Cancel the common factor.
162=162+3⋅(-24-4c3)-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6.1.1.1.4
Rewrite the expression.
162=162-24(-4c)-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
162=162-24(-4c)-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6.1.1.2
Multiply -4 by -24.
162=162+96c-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
162=162+96c-80c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.6.1.2
Subtract 80c from 96c.
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2-b-c
Step 2.3.4.7
Replace all occurrences of b in a=2-b-c with -4c3.
a=2-(-4c3)-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8
Simplify the right side.
Step 2.3.4.8.1
Simplify 2-(-4c3)-c.
Step 2.3.4.8.1.1
Multiply -(-4c3).
Step 2.3.4.8.1.1.1
Multiply -1 by -1.
a=2+1(4c3)-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.1.2
Multiply 4c3 by 1.
a=2+4c3-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+4c3-c
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.2
To write -c as a fraction with a common denominator, multiply by 33.
a=2+4c3-c⋅33
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.3
Simplify terms.
Step 2.3.4.8.1.3.1
Combine -c and 33.
a=2+4c3+-c⋅33
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.3.2
Combine the numerators over the common denominator.
a=2+4c-c⋅33
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+4c-c⋅33
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4
Simplify each term.
Step 2.3.4.8.1.4.1
Simplify the numerator.
Step 2.3.4.8.1.4.1.1
Factor c out of 4c-c⋅3.
Step 2.3.4.8.1.4.1.1.1
Factor c out of 4c.
a=2+c⋅4-c⋅33
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4.1.1.2
Factor c out of -c⋅3.
a=2+c⋅4+c(-1⋅3)3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4.1.1.3
Factor c out of c⋅4+c(-1⋅3).
a=2+c(4-1⋅3)3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c(4-1⋅3)3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4.1.2
Multiply -1 by 3.
a=2+c(4-3)3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4.1.3
Subtract 3 from 4.
a=2+c⋅13
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c⋅13
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.4.8.1.4.2
Multiply c by 1.
a=2+c3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
a=2+c3
162=162+16c
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5
Solve for c in 162=162+16c.
Step 2.3.5.1
Rewrite the equation as 162+16c=162.
162+16c=162
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.2
Move all terms not containing c to the right side of the equation.
Step 2.3.5.2.1
Subtract 162 from both sides of the equation.
16c=162-162
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.2.2
Subtract 162 from 162.
16c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
16c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.3
Divide each term in 16c=0 by 16 and simplify.
Step 2.3.5.3.1
Divide each term in 16c=0 by 16.
16c16=016
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.3.2
Simplify the left side.
Step 2.3.5.3.2.1
Cancel the common factor of 16.
Step 2.3.5.3.2.1.1
Cancel the common factor.
16c16=016
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.3.2.1.2
Divide c by 1.
c=016
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
c=016
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
c=016
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.5.3.3
Simplify the right side.
Step 2.3.5.3.3.1
Divide 0 by 16.
c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
c=0
a=2+c3
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.6
Replace all occurrences of c with 0 in each equation.
Step 2.3.6.1
Replace all occurrences of c in a=2+c3 with 0.
a=2+03
c=0
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify 2+03.
Step 2.3.6.2.1.1
Divide 0 by 3.
a=2+0
c=0
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.6.2.1.2
Add 2 and 0.
a=2
c=0
8=8-c3
128=128+35c3
b=-4c3
a=2
c=0
8=8-c3
128=128+35c3
b=-4c3
a=2
c=0
8=8-c3
128=128+35c3
b=-4c3
Step 2.3.6.3
Replace all occurrences of c in 8=8-c3 with 0.
8=8-03
a=2
c=0
128=128+35c3
b=-4c3
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify 8-03.
Step 2.3.6.4.1.1
Simplify each term.
Step 2.3.6.4.1.1.1
Divide 0 by 3.
8=8-0
a=2
c=0
128=128+35c3
b=-4c3
Step 2.3.6.4.1.1.2
Multiply -1 by 0.
8=8+0
a=2
c=0
128=128+35c3
b=-4c3
8=8+0
a=2
c=0
128=128+35c3
b=-4c3
Step 2.3.6.4.1.2
Add 8 and 0.
8=8
a=2
c=0
128=128+35c3
b=-4c3
8=8
a=2
c=0
128=128+35c3
b=-4c3
8=8
a=2
c=0
128=128+35c3
b=-4c3
Step 2.3.6.5
Replace all occurrences of c in 128=128+35c3 with 0.
128=128+35(0)3
8=8
a=2
c=0
b=-4c3
Step 2.3.6.6
Simplify the right side.
Step 2.3.6.6.1
Simplify 128+35(0)3.
Step 2.3.6.6.1.1
Multiply 35 by 0.
128=128+03
8=8
a=2
c=0
b=-4c3
Step 2.3.6.6.1.2
Divide 0 by 3.
128=128+0
8=8
a=2
c=0
b=-4c3
Step 2.3.6.6.1.3
Add 128 and 0.
128=128
8=8
a=2
c=0
b=-4c3
128=128
8=8
a=2
c=0
b=-4c3
128=128
8=8
a=2
c=0
b=-4c3
Step 2.3.6.7
Replace all occurrences of c in b=-4c3 with 0.
b=-4(0)3
128=128
8=8
a=2
c=0
Step 2.3.6.8
Simplify the right side.
Step 2.3.6.8.1
Simplify -4(0)3.
Step 2.3.6.8.1.1
Cancel the common factor of 0 and 3.
Step 2.3.6.8.1.1.1
Factor 3 out of 4(0).
b=-3(4⋅(0))3
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.1.2
Cancel the common factors.
Step 2.3.6.8.1.1.2.1
Factor 3 out of 3.
b=-3(4⋅(0))3(1)
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.1.2.2
Cancel the common factor.
b=-3(4⋅(0))3⋅1
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.1.2.3
Rewrite the expression.
b=-4⋅(0)1
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.1.2.4
Divide 4⋅(0) by 1.
b=-(4⋅(0))
128=128
8=8
a=2
c=0
b=-(4⋅(0))
128=128
8=8
a=2
c=0
b=-(4⋅(0))
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.2
Multiply -(4⋅(0)).
Step 2.3.6.8.1.2.1
Multiply 4 by 0.
b=-0
128=128
8=8
a=2
c=0
Step 2.3.6.8.1.2.2
Multiply -1 by 0.
b=0
128=128
8=8
a=2
c=0
b=0
128=128
8=8
a=2
c=0
b=0
128=128
8=8
a=2
c=0
b=0
128=128
8=8
a=2
c=0
b=0
128=128
8=8
a=2
c=0
Step 2.3.7
Remove any equations from the system that are always true.
b=0
a=2
c=0
Step 2.3.8
List all of the solutions.
b=0,a=2,c=0
b=0,a=2,c=0
Step 2.4
Calculate the value of y using each x value in the table and compare this value to the given q(x) value in the table.
Step 2.4.1
Calculate the value of y such that y=ax2+b when a=2, b=0, c=0, and x=1.
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
One to any power is one.
y=2⋅1+(0)⋅(1)+0
Step 2.4.1.1.2
Multiply 2 by 1.
y=2+(0)⋅(1)+0
Step 2.4.1.1.3
Multiply 0 by 1.
y=2+0+0
y=2+0+0
Step 2.4.1.2
Simplify by adding numbers.
Step 2.4.1.2.1
Add 2 and 0.
y=2+0
Step 2.4.1.2.2
Add 2 and 0.
y=2
y=2
y=2
Step 2.4.2
If the table has a quadratic function rule, y=q(x) for the corresponding x value, x=1. This check passes since y=2 and q(x)=2.
2=2
Step 2.4.3
Calculate the value of y such that y=ax2+b when a=2, b=0, c=0, and x=9.
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Raise 9 to the power of 2.
y=2⋅81+(0)⋅(9)+0
Step 2.4.3.1.2
Multiply 2 by 81.
y=162+(0)⋅(9)+0
Step 2.4.3.1.3
Multiply 0 by 9.
y=162+0+0
y=162+0+0
Step 2.4.3.2
Simplify by adding numbers.
Step 2.4.3.2.1
Add 162 and 0.
y=162+0
Step 2.4.3.2.2
Add 162 and 0.
y=162
y=162
y=162
Step 2.4.4
If the table has a quadratic function rule, y=q(x) for the corresponding x value, x=9. This check passes since y=162 and q(x)=162.
162=162
Step 2.4.5
Calculate the value of y such that y=ax2+b when a=2, b=0, c=0, and x=2.
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Multiply 2 by (2)2 by adding the exponents.
Step 2.4.5.1.1.1
Multiply 2 by (2)2.
Step 2.4.5.1.1.1.1
Raise 2 to the power of 1.
y=2⋅(2)2+(0)⋅(2)+0
Step 2.4.5.1.1.1.2
Use the power rule aman=am+n to combine exponents.
y=21+2+(0)⋅(2)+0
y=21+2+(0)⋅(2)+0
Step 2.4.5.1.1.2
Add 1 and 2.
y=23+(0)⋅(2)+0
y=23+(0)⋅(2)+0
Step 2.4.5.1.2
Raise 2 to the power of 3.
y=8+(0)⋅(2)+0
Step 2.4.5.1.3
Multiply 0 by 2.
y=8+0+0
y=8+0+0
Step 2.4.5.2
Simplify by adding numbers.
Step 2.4.5.2.1
Add 8 and 0.
y=8+0
Step 2.4.5.2.2
Add 8 and 0.
y=8
y=8
y=8
Step 2.4.6
If the table has a quadratic function rule, y=q(x) for the corresponding x value, x=2. This check passes since y=8 and q(x)=8.
8=8
Step 2.4.7
Calculate the value of y such that y=ax2+b when a=2, b=0, c=0, and x=8.
Step 2.4.7.1
Simplify each term.
Step 2.4.7.1.1
Raise 8 to the power of 2.
y=2⋅64+(0)⋅(8)+0
Step 2.4.7.1.2
Multiply 2 by 64.
y=128+(0)⋅(8)+0
Step 2.4.7.1.3
Multiply 0 by 8.
y=128+0+0
y=128+0+0
Step 2.4.7.2
Simplify by adding numbers.
Step 2.4.7.2.1
Add 128 and 0.
y=128+0
Step 2.4.7.2.2
Add 128 and 0.
y=128
y=128
y=128
Step 2.4.8
If the table has a quadratic function rule, y=q(x) for the corresponding x value, x=8. This check passes since y=128 and q(x)=128.
128=128
Step 2.4.9
Calculate the value of y such that y=ax2+b when a=2, b=0, c=0, and x=3.
Step 2.4.9.1
Simplify each term.
Step 2.4.9.1.1
Raise 3 to the power of 2.
y=2⋅9+(0)⋅(3)+0
Step 2.4.9.1.2
Multiply 2 by 9.
y=18+(0)⋅(3)+0
Step 2.4.9.1.3
Multiply 0 by 3.
y=18+0+0
y=18+0+0
Step 2.4.9.2
Simplify by adding numbers.
Step 2.4.9.2.1
Add 18 and 0.
y=18+0
Step 2.4.9.2.2
Add 18 and 0.
y=18
y=18
y=18
Step 2.4.10
If the table has a quadratic function rule, y=q(x) for the corresponding x value, x=3. This check passes since y=18 and q(x)=18.
18=18
Step 2.4.11
Since y=q(x) for the corresponding x values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all y=q(x), the function is quadratic and follows the form y=2x2.
y=2x2