Algebra Examples
xq(x)24466879xq(x)24466879
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+by=ax+b.
y=ax+by=ax+b
Step 1.2
Build a set of equations from the table such that q(x)=ax+bq(x)=ax+b.
4=a(2)+b6=a(4)+b8=a(6)+b9=a(7)+b
Step 1.3
Calculate the values of a and b.
Step 1.3.1
Solve for b in 4=a(2)+b.
Step 1.3.1.1
Rewrite the equation as a(2)+b=4.
a(2)+b=4
6=a(4)+b
8=a(6)+b
9=a(7)+b
Step 1.3.1.2
Move 2 to the left of a.
2a+b=4
6=a(4)+b
8=a(6)+b
9=a(7)+b
Step 1.3.1.3
Subtract 2a from both sides of the equation.
b=4-2a
6=a(4)+b
8=a(6)+b
9=a(7)+b
b=4-2a
6=a(4)+b
8=a(6)+b
9=a(7)+b
Step 1.3.2
Replace all occurrences of b with 4-2a in each equation.
Step 1.3.2.1
Replace all occurrences of b in 6=a(4)+b with 4-2a.
6=a(4)+4-2a
b=4-2a
8=a(6)+b
9=a(7)+b
Step 1.3.2.2
Simplify 6=a(4)+4-2a.
Step 1.3.2.2.1
Simplify the left side.
Step 1.3.2.2.1.1
Remove parentheses.
6=a(4)+4-2a
b=4-2a
8=a(6)+b
9=a(7)+b
6=a(4)+4-2a
b=4-2a
8=a(6)+b
9=a(7)+b
Step 1.3.2.2.2
Simplify the right side.
Step 1.3.2.2.2.1
Simplify a(4)+4-2a.
Step 1.3.2.2.2.1.1
Move 4 to the left of a.
6=4a+4-2a
b=4-2a
8=a(6)+b
9=a(7)+b
Step 1.3.2.2.2.1.2
Subtract 2a from 4a.
6=2a+4
b=4-2a
8=a(6)+b
9=a(7)+b
6=2a+4
b=4-2a
8=a(6)+b
9=a(7)+b
6=2a+4
b=4-2a
8=a(6)+b
9=a(7)+b
6=2a+4
b=4-2a
8=a(6)+b
9=a(7)+b
Step 1.3.2.3
Replace all occurrences of b in 8=a(6)+b with 4-2a.
8=a(6)+4-2a
6=2a+4
b=4-2a
9=a(7)+b
Step 1.3.2.4
Simplify 8=a(6)+4-2a.
Step 1.3.2.4.1
Simplify the left side.
Step 1.3.2.4.1.1
Remove parentheses.
8=a(6)+4-2a
6=2a+4
b=4-2a
9=a(7)+b
8=a(6)+4-2a
6=2a+4
b=4-2a
9=a(7)+b
Step 1.3.2.4.2
Simplify the right side.
Step 1.3.2.4.2.1
Simplify a(6)+4-2a.
Step 1.3.2.4.2.1.1
Move 6 to the left of a.
8=6a+4-2a
6=2a+4
b=4-2a
9=a(7)+b
Step 1.3.2.4.2.1.2
Subtract 2a from 6a.
8=4a+4
6=2a+4
b=4-2a
9=a(7)+b
8=4a+4
6=2a+4
b=4-2a
9=a(7)+b
8=4a+4
6=2a+4
b=4-2a
9=a(7)+b
8=4a+4
6=2a+4
b=4-2a
9=a(7)+b
Step 1.3.2.5
Replace all occurrences of b in 9=a(7)+b with 4-2a.
9=a(7)+4-2a
8=4a+4
6=2a+4
b=4-2a
Step 1.3.2.6
Simplify 9=a(7)+4-2a.
Step 1.3.2.6.1
Simplify the left side.
Step 1.3.2.6.1.1
Remove parentheses.
9=a(7)+4-2a
8=4a+4
6=2a+4
b=4-2a
9=a(7)+4-2a
8=4a+4
6=2a+4
b=4-2a
Step 1.3.2.6.2
Simplify the right side.
Step 1.3.2.6.2.1
Simplify a(7)+4-2a.
Step 1.3.2.6.2.1.1
Move 7 to the left of a.
9=7a+4-2a
8=4a+4
6=2a+4
b=4-2a
Step 1.3.2.6.2.1.2
Subtract 2a from 7a.
9=5a+4
8=4a+4
6=2a+4
b=4-2a
9=5a+4
8=4a+4
6=2a+4
b=4-2a
9=5a+4
8=4a+4
6=2a+4
b=4-2a
9=5a+4
8=4a+4
6=2a+4
b=4-2a
9=5a+4
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3
Solve for a in 9=5a+4.
Step 1.3.3.1
Rewrite the equation as 5a+4=9.
5a+4=9
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.2
Move all terms not containing a to the right side of the equation.
Step 1.3.3.2.1
Subtract 4 from both sides of the equation.
5a=9-4
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.2.2
Subtract 4 from 9.
5a=5
8=4a+4
6=2a+4
b=4-2a
5a=5
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.3
Divide each term in 5a=5 by 5 and simplify.
Step 1.3.3.3.1
Divide each term in 5a=5 by 5.
5a5=55
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of 5.
Step 1.3.3.3.2.1.1
Cancel the common factor.
5a5=55
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.3.2.1.2
Divide a by 1.
a=55
8=4a+4
6=2a+4
b=4-2a
a=55
8=4a+4
6=2a+4
b=4-2a
a=55
8=4a+4
6=2a+4
b=4-2a
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide 5 by 5.
a=1
8=4a+4
6=2a+4
b=4-2a
a=1
8=4a+4
6=2a+4
b=4-2a
a=1
8=4a+4
6=2a+4
b=4-2a
a=1
8=4a+4
6=2a+4
b=4-2a
Step 1.3.4
Replace all occurrences of a with 1 in each equation.
Step 1.3.4.1
Replace all occurrences of a in 8=4a+4 with 1.
8=4(1)+4
a=1
6=2a+4
b=4-2a
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify 4(1)+4.
Step 1.3.4.2.1.1
Multiply 4 by 1.
8=4+4
a=1
6=2a+4
b=4-2a
Step 1.3.4.2.1.2
Add 4 and 4.
8=8
a=1
6=2a+4
b=4-2a
8=8
a=1
6=2a+4
b=4-2a
8=8
a=1
6=2a+4
b=4-2a
Step 1.3.4.3
Replace all occurrences of a in 6=2a+4 with 1.
6=2(1)+4
8=8
a=1
b=4-2a
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify 2(1)+4.
Step 1.3.4.4.1.1
Multiply 2 by 1.
6=2+4
8=8
a=1
b=4-2a
Step 1.3.4.4.1.2
Add 2 and 4.
6=6
8=8
a=1
b=4-2a
6=6
8=8
a=1
b=4-2a
6=6
8=8
a=1
b=4-2a
Step 1.3.4.5
Replace all occurrences of a in b=4-2a with 1.
b=4-2⋅1
6=6
8=8
a=1
Step 1.3.4.6
Simplify the right side.
Step 1.3.4.6.1
Simplify 4-2⋅1.
Step 1.3.4.6.1.1
Multiply -2 by 1.
b=4-2
6=6
8=8
a=1
Step 1.3.4.6.1.2
Subtract 2 from 4.
b=2
6=6
8=8
a=1
b=2
6=6
8=8
a=1
b=2
6=6
8=8
a=1
b=2
6=6
8=8
a=1
Step 1.3.5
Remove any equations from the system that are always true.
b=2
a=1
Step 1.3.6
List all of the solutions.
b=2,a=1
b=2,a=1
Step 1.4
Calculate the value of y using each x value in the relation and compare this value to the given q(x) value in the relation.
Step 1.4.1
Calculate the value of y when a=1, b=2, and x=2.
Step 1.4.1.1
Multiply 2 by 1.
y=2+2
Step 1.4.1.2
Add 2 and 2.
y=4
y=4
Step 1.4.2
If the table has a linear function rule, y=q(x) for the corresponding x value, x=2. This check passes since y=4 and q(x)=4.
4=4
Step 1.4.3
Calculate the value of y when a=1, b=2, and x=4.
Step 1.4.3.1
Multiply 4 by 1.
y=4+2
Step 1.4.3.2
Add 4 and 2.
y=6
y=6
Step 1.4.4
If the table has a linear function rule, y=q(x) for the corresponding x value, x=4. This check passes since y=6 and q(x)=6.
6=6
Step 1.4.5
Calculate the value of y when a=1, b=2, and x=6.
Step 1.4.5.1
Multiply 6 by 1.
y=6+2
Step 1.4.5.2
Add 6 and 2.
y=8
y=8
Step 1.4.6
If the table has a linear function rule, y=q(x) for the corresponding x value, x=6. This check passes since y=8 and q(x)=8.
8=8
Step 1.4.7
Calculate the value of y when a=1, b=2, and x=7.
Step 1.4.7.1
Multiply 7 by 1.
y=7+2
Step 1.4.7.2
Add 7 and 2.
y=9
y=9
Step 1.4.8
If the table has a linear function rule, y=q(x) for the corresponding x value, x=7. This check passes since y=9 and q(x)=9.
9=9
Step 1.4.9
Since y=q(x) for the corresponding x values, the function is linear.
The function is linear
The function is linear
The function is linear
Step 2
Since all y=q(x), the function is linear and follows the form y=x+2.
y=x+2