Algebra Examples
6x2+3y2=126x2+3y2=12 , x+y=2x+y=2
Step 1
Subtract yy from both sides of the equation.
x=2-yx=2−y
6x2+3y2=126x2+3y2=12
Step 2
Step 2.1
Replace all occurrences of xx in 6x2+3y2=126x2+3y2=12 with 2-y2−y.
6(2-y)2+3y2=126(2−y)2+3y2=12
x=2-yx=2−y
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify 6(2-y)2+3y26(2−y)2+3y2.
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite (2-y)2(2−y)2 as (2-y)(2-y)(2−y)(2−y).
6((2-y)(2-y))+3y2=126((2−y)(2−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.2
Expand (2-y)(2-y)(2−y)(2−y) using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
6(2(2-y)-y(2-y))+3y2=126(2(2−y)−y(2−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.2.2
Apply the distributive property.
6(2⋅2+2(-y)-y(2-y))+3y2=126(2⋅2+2(−y)−y(2−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.2.3
Apply the distributive property.
6(2⋅2+2(-y)-y⋅2-y(-y))+3y2=126(2⋅2+2(−y)−y⋅2−y(−y))+3y2=12
x=2-yx=2−y
6(2⋅2+2(-y)-y⋅2-y(-y))+3y2=126(2⋅2+2(−y)−y⋅2−y(−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply 22 by 22.
6(4+2(-y)-y⋅2-y(-y))+3y2=126(4+2(−y)−y⋅2−y(−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.2
Multiply -1−1 by 22.
6(4-2y-y⋅2-y(-y))+3y2=126(4−2y−y⋅2−y(−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.3
Multiply 22 by -1−1.
6(4-2y-2y-y(-y))+3y2=126(4−2y−2y−y(−y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.4
Rewrite using the commutative property of multiplication.
6(4-2y-2y-1⋅(-1y⋅y))+3y2=126(4−2y−2y−1⋅(−1y⋅y))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.5
Multiply yy by yy by adding the exponents.
Step 2.2.1.1.3.1.5.1
Move yy.
6(4-2y-2y-1⋅(-1(y⋅y)))+3y2=126(4−2y−2y−1⋅(−1(y⋅y)))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.5.2
Multiply yy by yy.
6(4-2y-2y-1⋅(-1y2))+3y2=126(4−2y−2y−1⋅(−1y2))+3y2=12
x=2-yx=2−y
6(4-2y-2y-1⋅(-1y2))+3y2=126(4−2y−2y−1⋅(−1y2))+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.6
Multiply -1−1 by -1−1.
6(4-2y-2y+1y2)+3y2=126(4−2y−2y+1y2)+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.1.7
Multiply y2y2 by 11.
6(4-2y-2y+y2)+3y2=126(4−2y−2y+y2)+3y2=12
x=2-yx=2−y
6(4-2y-2y+y2)+3y2=126(4−2y−2y+y2)+3y2=12
x=2-yx=2−y
Step 2.2.1.1.3.2
Subtract 2y2y from -2y−2y.
6(4-4y+y2)+3y2=126(4−4y+y2)+3y2=12
x=2-yx=2−y
6(4-4y+y2)+3y2=126(4−4y+y2)+3y2=12
x=2-yx=2−y
Step 2.2.1.1.4
Apply the distributive property.
6⋅4+6(-4y)+6y2+3y2=126⋅4+6(−4y)+6y2+3y2=12
x=2-yx=2−y
Step 2.2.1.1.5
Simplify.
Step 2.2.1.1.5.1
Multiply 66 by 44.
24+6(-4y)+6y2+3y2=1224+6(−4y)+6y2+3y2=12
x=2-yx=2−y
Step 2.2.1.1.5.2
Multiply -4−4 by 66.
24-24y+6y2+3y2=1224−24y+6y2+3y2=12
x=2-yx=2−y
24-24y+6y2+3y2=1224−24y+6y2+3y2=12
x=2-yx=2−y
24-24y+6y2+3y2=1224−24y+6y2+3y2=12
x=2-yx=2−y
Step 2.2.1.2
Add 6y26y2 and 3y23y2.
24-24y+9y2=1224−24y+9y2=12
x=2-yx=2−y
24-24y+9y2=1224−24y+9y2=12
x=2-yx=2−y
24-24y+9y2=1224−24y+9y2=12
x=2-yx=2−y
24-24y+9y2=1224−24y+9y2=12
x=2-yx=2−y
Step 3
Step 3.1
Subtract 1212 from both sides of the equation.
24-24y+9y2-12=024−24y+9y2−12=0
x=2-yx=2−y
Step 3.2
Subtract 1212 from 2424.
-24y+9y2+12=0−24y+9y2+12=0
x=2-yx=2−y
Step 3.3
Factor the left side of the equation.
Step 3.3.1
Factor 33 out of -24y+9y2+12−24y+9y2+12.
Step 3.3.1.1
Factor 33 out of -24y−24y.
3(-8y)+9y2+12=03(−8y)+9y2+12=0
x=2-yx=2−y
Step 3.3.1.2
Factor 33 out of 9y29y2.
3(-8y)+3(3y2)+12=03(−8y)+3(3y2)+12=0
x=2-yx=2−y
Step 3.3.1.3
Factor 33 out of 1212.
3(-8y)+3(3y2)+3(4)=03(−8y)+3(3y2)+3(4)=0
x=2-yx=2−y
Step 3.3.1.4
Factor 33 out of 3(-8y)+3(3y2)3(−8y)+3(3y2).
3(-8y+3y2)+3(4)=03(−8y+3y2)+3(4)=0
x=2-yx=2−y
Step 3.3.1.5
Factor 33 out of 3(-8y+3y2)+3(4)3(−8y+3y2)+3(4).
3(-8y+3y2+4)=03(−8y+3y2+4)=0
x=2-yx=2−y
3(-8y+3y2+4)=03(−8y+3y2+4)=0
x=2-yx=2−y
Step 3.3.2
Let u=yu=y. Substitute uu for all occurrences of yy.
3(-8u+3u2+4)=03(−8u+3u2+4)=0
x=2-yx=2−y
Step 3.3.3
Factor by grouping.
Step 3.3.3.1
Reorder terms.
3(3u2-8u+4)=03(3u2−8u+4)=0
x=2-yx=2−y
Step 3.3.3.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=3⋅4=12a⋅c=3⋅4=12 and whose sum is b=-8b=−8.
Step 3.3.3.2.1
Factor -8−8 out of -8u−8u.
3(3u2-8u+4)=03(3u2−8u+4)=0
x=2-yx=2−y
Step 3.3.3.2.2
Rewrite -8−8 as -2−2 plus -6−6
3(3u2+(-2-6)u+4)=03(3u2+(−2−6)u+4)=0
x=2-yx=2−y
Step 3.3.3.2.3
Apply the distributive property.
3(3u2-2u-6u+4)=03(3u2−2u−6u+4)=0
x=2-yx=2−y
3(3u2-2u-6u+4)=03(3u2−2u−6u+4)=0
x=2-yx=2−y
Step 3.3.3.3
Factor out the greatest common factor from each group.
Step 3.3.3.3.1
Group the first two terms and the last two terms.
3((3u2-2u)-6u+4)=03((3u2−2u)−6u+4)=0
x=2-yx=2−y
Step 3.3.3.3.2
Factor out the greatest common factor (GCF) from each group.
3(u(3u-2)-2(3u-2))=03(u(3u−2)−2(3u−2))=0
x=2-yx=2−y
3(u(3u-2)-2(3u-2))=03(u(3u−2)−2(3u−2))=0
x=2-yx=2−y
Step 3.3.3.4
Factor the polynomial by factoring out the greatest common factor, 3u-23u−2.
3((3u-2)(u-2))=03((3u−2)(u−2))=0
x=2-yx=2−y
3((3u-2)(u-2))=03((3u−2)(u−2))=0
x=2-yx=2−y
Step 3.3.4
Factor.
Step 3.3.4.1
Replace all occurrences of uu with yy.
3((3y-2)(y-2))=03((3y−2)(y−2))=0
x=2-yx=2−y
Step 3.3.4.2
Remove unnecessary parentheses.
3(3y-2)(y-2)=03(3y−2)(y−2)=0
x=2-yx=2−y
3(3y-2)(y-2)=03(3y−2)(y−2)=0
x=2-yx=2−y
3(3y-2)(y-2)=03(3y−2)(y−2)=0
x=2-yx=2−y
Step 3.4
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
3y-2=03y−2=0
y-2=0y−2=0
x=2-yx=2−y
Step 3.5
Set 3y-23y−2 equal to 00 and solve for yy.
Step 3.5.1
Set 3y-23y−2 equal to 00.
3y-2=03y−2=0
x=2-yx=2−y
Step 3.5.2
Solve 3y-2=03y−2=0 for yy.
Step 3.5.2.1
Add 22 to both sides of the equation.
3y=23y=2
x=2-yx=2−y
Step 3.5.2.2
Divide each term in 3y=23y=2 by 33 and simplify.
Step 3.5.2.2.1
Divide each term in 3y=23y=2 by 33.
3y3=233y3=23
x=2-yx=2−y
Step 3.5.2.2.2
Simplify the left side.
Step 3.5.2.2.2.1
Cancel the common factor of 33.
Step 3.5.2.2.2.1.1
Cancel the common factor.
3y3=23
x=2-y
Step 3.5.2.2.2.1.2
Divide y by 1.
y=23
x=2-y
y=23
x=2-y
y=23
x=2-y
y=23
x=2-y
y=23
x=2-y
y=23
x=2-y
Step 3.6
Set y-2 equal to 0 and solve for y.
Step 3.6.1
Set y-2 equal to 0.
y-2=0
x=2-y
Step 3.6.2
Add 2 to both sides of the equation.
y=2
x=2-y
y=2
x=2-y
Step 3.7
The final solution is all the values that make 3(3y-2)(y-2)=0 true.
y=23,2
x=2-y
y=23,2
x=2-y
Step 4
Step 4.1
Replace all occurrences of y in x=2-y with 23.
x=2-(23)
y=23
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 2-(23).
Step 4.2.1.1
To write 2 as a fraction with a common denominator, multiply by 33.
x=2⋅33-23
y=23
Step 4.2.1.2
Combine 2 and 33.
x=2⋅33-23
y=23
Step 4.2.1.3
Combine the numerators over the common denominator.
x=2⋅3-23
y=23
Step 4.2.1.4
Simplify the numerator.
Step 4.2.1.4.1
Multiply 2 by 3.
x=6-23
y=23
Step 4.2.1.4.2
Subtract 2 from 6.
x=43
y=23
x=43
y=23
x=43
y=23
x=43
y=23
x=43
y=23
Step 5
Step 5.1
Replace all occurrences of y in x=2-y with 2.
x=2-(2)
y=2
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify 2-(2).
Step 5.2.1.1
Multiply -1 by 2.
x=2-2
y=2
Step 5.2.1.2
Subtract 2 from 2.
x=0
y=2
x=0
y=2
x=0
y=2
x=0
y=2
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
(43,23)
(0,2)
Step 7
The result can be shown in multiple forms.
Point Form:
(43,23),(0,2)
Equation Form:
x=43,y=23
x=0,y=2
Step 8