Algebra Examples

4x+4y=1 , 6xy=1
Step 1
Solve for x in 4x+4y=1.
Tap for more steps...
Step 1.1
Subtract 4y from both sides of the equation.
4x=14y
6xy=1
Step 1.2
Divide each term in 4x=14y by 4 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in 4x=14y by 4.
4x4=14+4y4
6xy=1
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of 4.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
4x4=14+4y4
6xy=1
Step 1.2.2.1.2
Divide x by 1.
x=14+4y4
6xy=1
x=14+4y4
6xy=1
x=14+4y4
6xy=1
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Cancel the common factor of 4 and 4.
Tap for more steps...
Step 1.2.3.1.1
Factor 4 out of 4y.
x=14+4(y)4
6xy=1
Step 1.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.1.2.1
Factor 4 out of 4.
x=14+4(y)4(1)
6xy=1
Step 1.2.3.1.2.2
Cancel the common factor.
x=14+4(y)41
6xy=1
Step 1.2.3.1.2.3
Rewrite the expression.
x=14+y1
6xy=1
Step 1.2.3.1.2.4
Divide y by 1.
x=14y
6xy=1
x=14y
6xy=1
x=14y
6xy=1
x=14y
6xy=1
x=14y
6xy=1
x=14y
6xy=1
Step 2
Replace all occurrences of x with 14y in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of x in 6xy=1 with 14y.
6(14y)y=1
x=14y
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify 6(14y)y.
Tap for more steps...
Step 2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
6(14)+6(y)y=1
x=14y
Step 2.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.1.1.2.1
Factor 2 out of 6.
2(3)(14)+6(y)y=1
x=14y
Step 2.2.1.1.2.2
Factor 2 out of 4.
2(3(122))+6(y)y=1
x=14y
Step 2.2.1.1.2.3
Cancel the common factor.
2(3(122))+6(y)y=1
x=14y
Step 2.2.1.1.2.4
Rewrite the expression.
3(12)+6(y)y=1
x=14y
3(12)+6(y)y=1
x=14y
Step 2.2.1.1.3
Combine 3 and 12.
32+6(y)y=1
x=14y
Step 2.2.1.1.4
Multiply 1 by 6.
326yy=1
x=14y
326yy=1
x=14y
Step 2.2.1.2
Subtract y from 6y.
327y=1
x=14y
327y=1
x=14y
327y=1
x=14y
327y=1
x=14y
Step 3
Solve for y in 327y=1.
Tap for more steps...
Step 3.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.1.1
Subtract 32 from both sides of the equation.
7y=132
x=14y
Step 3.1.2
Write 1 as a fraction with a common denominator.
7y=2232
x=14y
Step 3.1.3
Combine the numerators over the common denominator.
7y=232
x=14y
Step 3.1.4
Subtract 3 from 2.
7y=12
x=14y
Step 3.1.5
Move the negative in front of the fraction.
7y=12
x=14y
7y=12
x=14y
Step 3.2
Divide each term in 7y=12 by 7 and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in 7y=12 by 7.
7y7=127
x=14y
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of 7.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
7y7=127
x=14y
Step 3.2.2.1.2
Divide y by 1.
y=127
x=14y
y=127
x=14y
y=127
x=14y
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Multiply the numerator by the reciprocal of the denominator.
y=1217
x=14y
Step 3.2.3.2
Move the negative in front of the fraction.
y=12(17)
x=14y
Step 3.2.3.3
Multiply 12(17).
Tap for more steps...
Step 3.2.3.3.1
Multiply 1 by 1.
y=1(12)17
x=14y
Step 3.2.3.3.2
Multiply 12 by 1.
y=1217
x=14y
Step 3.2.3.3.3
Multiply 12 by 17.
y=127
x=14y
Step 3.2.3.3.4
Multiply 2 by 7.
y=114
x=14y
y=114
x=14y
y=114
x=14y
y=114
x=14y
y=114
x=14y
Step 4
Replace all occurrences of y with 114 in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of y in x=14y with 114.
x=14(114)
y=114
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify 14(114).
Tap for more steps...
Step 4.2.1.1
To write 14 as a fraction with a common denominator, multiply by 77.
x=1477114
y=114
Step 4.2.1.2
To write 114 as a fraction with a common denominator, multiply by 22.
x=147711422
y=114
Step 4.2.1.3
Write each expression with a common denominator of 28, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 4.2.1.3.1
Multiply 14 by 77.
x=74711422
y=114
Step 4.2.1.3.2
Multiply 4 by 7.
x=72811422
y=114
Step 4.2.1.3.3
Multiply 114 by 22.
x=7282142
y=114
Step 4.2.1.3.4
Multiply 14 by 2.
x=728228
y=114
x=728228
y=114
Step 4.2.1.4
Combine the numerators over the common denominator.
x=7228
y=114
Step 4.2.1.5
Subtract 2 from 7.
x=528
y=114
x=528
y=114
x=528
y=114
x=528
y=114
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(528,114)
Step 6
The result can be shown in multiple forms.
Point Form:
(528,114)
Equation Form:
x=528,y=114
Step 7
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay