Algebra Examples
4x+4y=1 , 6x−y=1
Step 1
Step 1.1
Subtract 4y from both sides of the equation.
4x=1−4y
6x−y=1
Step 1.2
Divide each term in 4x=1−4y by 4 and simplify.
Step 1.2.1
Divide each term in 4x=1−4y by 4.
4x4=14+−4y4
6x−y=1
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of 4.
Step 1.2.2.1.1
Cancel the common factor.
4x4=14+−4y4
6x−y=1
Step 1.2.2.1.2
Divide x by 1.
x=14+−4y4
6x−y=1
x=14+−4y4
6x−y=1
x=14+−4y4
6x−y=1
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Cancel the common factor of −4 and 4.
Step 1.2.3.1.1
Factor 4 out of −4y.
x=14+4(−y)4
6x−y=1
Step 1.2.3.1.2
Cancel the common factors.
Step 1.2.3.1.2.1
Factor 4 out of 4.
x=14+4(−y)4(1)
6x−y=1
Step 1.2.3.1.2.2
Cancel the common factor.
x=14+4(−y)4⋅1
6x−y=1
Step 1.2.3.1.2.3
Rewrite the expression.
x=14+−y1
6x−y=1
Step 1.2.3.1.2.4
Divide −y by 1.
x=14−y
6x−y=1
x=14−y
6x−y=1
x=14−y
6x−y=1
x=14−y
6x−y=1
x=14−y
6x−y=1
x=14−y
6x−y=1
Step 2
Step 2.1
Replace all occurrences of x in 6x−y=1 with 14−y.
6(14−y)−y=1
x=14−y
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify 6(14−y)−y.
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
6(14)+6(−y)−y=1
x=14−y
Step 2.2.1.1.2
Cancel the common factor of 2.
Step 2.2.1.1.2.1
Factor 2 out of 6.
2(3)(14)+6(−y)−y=1
x=14−y
Step 2.2.1.1.2.2
Factor 2 out of 4.
2⋅(3(12⋅2))+6(−y)−y=1
x=14−y
Step 2.2.1.1.2.3
Cancel the common factor.
2⋅(3(12⋅2))+6(−y)−y=1
x=14−y
Step 2.2.1.1.2.4
Rewrite the expression.
3(12)+6(−y)−y=1
x=14−y
3(12)+6(−y)−y=1
x=14−y
Step 2.2.1.1.3
Combine 3 and 12.
32+6(−y)−y=1
x=14−y
Step 2.2.1.1.4
Multiply −1 by 6.
32−6y−y=1
x=14−y
32−6y−y=1
x=14−y
Step 2.2.1.2
Subtract y from −6y.
32−7y=1
x=14−y
32−7y=1
x=14−y
32−7y=1
x=14−y
32−7y=1
x=14−y
Step 3
Step 3.1
Move all terms not containing y to the right side of the equation.
Step 3.1.1
Subtract 32 from both sides of the equation.
−7y=1−32
x=14−y
Step 3.1.2
Write 1 as a fraction with a common denominator.
−7y=22−32
x=14−y
Step 3.1.3
Combine the numerators over the common denominator.
−7y=2−32
x=14−y
Step 3.1.4
Subtract 3 from 2.
−7y=−12
x=14−y
Step 3.1.5
Move the negative in front of the fraction.
−7y=−12
x=14−y
−7y=−12
x=14−y
Step 3.2
Divide each term in −7y=−12 by −7 and simplify.
Step 3.2.1
Divide each term in −7y=−12 by −7.
−7y−7=−12−7
x=14−y
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of −7.
Step 3.2.2.1.1
Cancel the common factor.
−7y−7=−12−7
x=14−y
Step 3.2.2.1.2
Divide y by 1.
y=−12−7
x=14−y
y=−12−7
x=14−y
y=−12−7
x=14−y
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Multiply the numerator by the reciprocal of the denominator.
y=−12⋅1−7
x=14−y
Step 3.2.3.2
Move the negative in front of the fraction.
y=−12⋅(−17)
x=14−y
Step 3.2.3.3
Multiply −12(−17).
Step 3.2.3.3.1
Multiply −1 by −1.
y=1(12)⋅17
x=14−y
Step 3.2.3.3.2
Multiply 12 by 1.
y=12⋅17
x=14−y
Step 3.2.3.3.3
Multiply 12 by 17.
y=12⋅7
x=14−y
Step 3.2.3.3.4
Multiply 2 by 7.
y=114
x=14−y
y=114
x=14−y
y=114
x=14−y
y=114
x=14−y
y=114
x=14−y
Step 4
Step 4.1
Replace all occurrences of y in x=14−y with 114.
x=14−(114)
y=114
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 14−(114).
Step 4.2.1.1
To write 14 as a fraction with a common denominator, multiply by 77.
x=14⋅77−114
y=114
Step 4.2.1.2
To write −114 as a fraction with a common denominator, multiply by 22.
x=14⋅77−114⋅22
y=114
Step 4.2.1.3
Write each expression with a common denominator of 28, by multiplying each by an appropriate factor of 1.
Step 4.2.1.3.1
Multiply 14 by 77.
x=74⋅7−114⋅22
y=114
Step 4.2.1.3.2
Multiply 4 by 7.
x=728−114⋅22
y=114
Step 4.2.1.3.3
Multiply 114 by 22.
x=728−214⋅2
y=114
Step 4.2.1.3.4
Multiply 14 by 2.
x=728−228
y=114
x=728−228
y=114
Step 4.2.1.4
Combine the numerators over the common denominator.
x=7−228
y=114
Step 4.2.1.5
Subtract 2 from 7.
x=528
y=114
x=528
y=114
x=528
y=114
x=528
y=114
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(528,114)
Step 6
The result can be shown in multiple forms.
Point Form:
(528,114)
Equation Form:
x=528,y=114
Step 7