Algebra Examples
x+y-z=3x+y−z=3 , 2x-8y+13z=12x−8y+13z=1
Step 1
Step 1.1
Subtract yy from both sides of the equation.
x-z=3-yx−z=3−y
2x-8y+13z=12x−8y+13z=1
Step 1.2
Add zz to both sides of the equation.
x=3-y+zx=3−y+z
2x-8y+13z=12x−8y+13z=1
x=3-y+zx=3−y+z
2x-8y+13z=12x−8y+13z=1
Step 2
Step 2.1
Simplify 2(3-y+z)-8y+13z2(3−y+z)−8y+13z.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Apply the distributive property.
2⋅3+2(-y)+2z-8y+13z=12⋅3+2(−y)+2z−8y+13z=1
x=3-y+zx=3−y+z
Step 2.1.1.2
Simplify.
Step 2.1.1.2.1
Multiply 22 by 33.
6+2(-y)+2z-8y+13z=16+2(−y)+2z−8y+13z=1
x=3-y+zx=3−y+z
Step 2.1.1.2.2
Multiply -1−1 by 22.
6-2y+2z-8y+13z=16−2y+2z−8y+13z=1
x=3-y+zx=3−y+z
6-2y+2z-8y+13z=16−2y+2z−8y+13z=1
x=3-y+zx=3−y+z
6-2y+2z-8y+13z=16−2y+2z−8y+13z=1
x=3-y+zx=3−y+z
Step 2.1.2
Simplify by adding terms.
Step 2.1.2.1
Subtract 8y8y from -2y−2y.
6-10y+2z+13z=16−10y+2z+13z=1
x=3-y+zx=3−y+z
Step 2.1.2.2
Add 2z2z and 13z13z.
6-10y+15z=16−10y+15z=1
x=3-y+zx=3−y+z
6-10y+15z=16−10y+15z=1
x=3-y+zx=3−y+z
6-10y+15z=16−10y+15z=1
x=3-y+zx=3−y+z
Step 2.2
Move all terms not containing yy to the right side of the equation.
Step 2.2.1
Subtract 66 from both sides of the equation.
-10y+15z=1-6−10y+15z=1−6
x=3-y+zx=3−y+z
Step 2.2.2
Subtract 15z15z from both sides of the equation.
-10y=1-6-15z−10y=1−6−15z
x=3-y+zx=3−y+z
Step 2.2.3
Subtract 66 from 11.
-10y=-5-15z−10y=−5−15z
x=3-y+zx=3−y+z
-10y=-5-15z−10y=−5−15z
x=3-y+zx=3−y+z
Step 2.3
Divide each term in -10y=-5-15z−10y=−5−15z by -10−10 and simplify.
Step 2.3.1
Divide each term in -10y=-5-15z−10y=−5−15z by -10−10.
-10y-10=-5-10+-15z-10−10y−10=−5−10+−15z−10
x=3-y+zx=3−y+z
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of -10−10.
Step 2.3.2.1.1
Cancel the common factor.
-10y-10=-5-10+-15z-10
x=3-y+z
Step 2.3.2.1.2
Divide y by 1.
y=-5-10+-15z-10
x=3-y+z
y=-5-10+-15z-10
x=3-y+z
y=-5-10+-15z-10
x=3-y+z
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Simplify each term.
Step 2.3.3.1.1
Cancel the common factor of -5 and -10.
Step 2.3.3.1.1.1
Factor -5 out of -5.
y=-5⋅1-10+-15z-10
x=3-y+z
Step 2.3.3.1.1.2
Cancel the common factors.
Step 2.3.3.1.1.2.1
Factor -5 out of -10.
y=-5⋅1-5⋅2+-15z-10
x=3-y+z
Step 2.3.3.1.1.2.2
Cancel the common factor.
y=-5⋅1-5⋅2+-15z-10
x=3-y+z
Step 2.3.3.1.1.2.3
Rewrite the expression.
y=12+-15z-10
x=3-y+z
y=12+-15z-10
x=3-y+z
y=12+-15z-10
x=3-y+z
Step 2.3.3.1.2
Cancel the common factor of -15 and -10.
Step 2.3.3.1.2.1
Factor -5 out of -15z.
y=12+-5(3z)-10
x=3-y+z
Step 2.3.3.1.2.2
Cancel the common factors.
Step 2.3.3.1.2.2.1
Factor -5 out of -10.
y=12+-5(3z)-5⋅2
x=3-y+z
Step 2.3.3.1.2.2.2
Cancel the common factor.
y=12+-5(3z)-5⋅2
x=3-y+z
Step 2.3.3.1.2.2.3
Rewrite the expression.
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
y=12+3z2
x=3-y+z
Step 3
Step 3.1
Simplify 3-(12+3z2)+z.
Step 3.1.1
Apply the distributive property.
x=3-12-3z2+z
y=12+3z2
Step 3.1.2
To write 3 as a fraction with a common denominator, multiply by 22.
x=3⋅22-12-3z2+z
y=12+3z2
Step 3.1.3
Combine 3 and 22.
x=3⋅22-12-3z2+z
y=12+3z2
Step 3.1.4
Combine the numerators over the common denominator.
x=3⋅2-12-3z2+z
y=12+3z2
Step 3.1.5
Simplify the numerator.
Step 3.1.5.1
Multiply 3 by 2.
x=6-12-3z2+z
y=12+3z2
Step 3.1.5.2
Subtract 1 from 6.
x=52-3z2+z
y=12+3z2
x=52-3z2+z
y=12+3z2
Step 3.1.6
To write z as a fraction with a common denominator, multiply by 22.
x=52-3z2+z⋅22
y=12+3z2
Step 3.1.7
Simplify terms.
Step 3.1.7.1
Combine z and 22.
x=52-3z2+z⋅22
y=12+3z2
Step 3.1.7.2
Combine the numerators over the common denominator.
x=52+-3z+z⋅22
y=12+3z2
Step 3.1.7.3
Combine the numerators over the common denominator.
x=5-3z+z⋅22
y=12+3z2
x=5-3z+z⋅22
y=12+3z2
Step 3.1.8
Move 2 to the left of z.
x=5-3z+2z2
y=12+3z2
Step 3.1.9
Add -3z and 2z.
x=5-z2
y=12+3z2
x=5-z2
y=12+3z2
x=5-z2
y=12+3z2
Step 4
Step 4.1
Reorder 12 and 3z2.
y=3z2+12
x=5-z2
y=3z2+12
x=5-z2