Algebra Examples
4x-9y=214x−9y=21 , 12x-27y=6312x−27y=63
Step 1
Step 1.1
Multiply each equation by the value that makes the coefficients of xx opposite.
(-3)⋅(4x-9y)=(-3)(21)(−3)⋅(4x−9y)=(−3)(21)
12x-27y=6312x−27y=63
Step 1.2
Simplify.
Step 1.2.1
Simplify the left side.
Step 1.2.1.1
Simplify (-3)⋅(4x-9y)(−3)⋅(4x−9y).
Step 1.2.1.1.1
Apply the distributive property.
-3(4x)-3(-9y)=(-3)(21)−3(4x)−3(−9y)=(−3)(21)
12x-27y=6312x−27y=63
Step 1.2.1.1.2
Multiply.
Step 1.2.1.1.2.1
Multiply 44 by -3−3.
-12x-3(-9y)=(-3)(21)−12x−3(−9y)=(−3)(21)
12x-27y=6312x−27y=63
Step 1.2.1.1.2.2
Multiply -9−9 by -3−3.
-12x+27y=(-3)(21)−12x+27y=(−3)(21)
12x-27y=6312x−27y=63
-12x+27y=(-3)(21)−12x+27y=(−3)(21)
12x-27y=6312x−27y=63
-12x+27y=(-3)(21)−12x+27y=(−3)(21)
12x-27y=6312x−27y=63
-12x+27y=(-3)(21)−12x+27y=(−3)(21)
12x-27y=6312x−27y=63
Step 1.2.2
Simplify the right side.
Step 1.2.2.1
Multiply -3−3 by 2121.
-12x+27y=-63−12x+27y=−63
12x-27y=63
-12x+27y=-63
12x-27y=63
-12x+27y=-63
12x-27y=63
Step 1.3
Add the two equations together to eliminate x from the system.
- | 1 | 2 | x | + | 2 | 7 | y | = | - | 6 | 3 | |||
+ | 1 | 2 | x | - | 2 | 7 | y | = | 6 | 3 | ||||
0 | = | 0 |
Step 1.4
Since 0=0, the equations intersect at an infinite number of points.
Infinite number of solutions
Step 1.5
Solve one of the equations for y.
Step 1.5.1
Add 12x to both sides of the equation.
27y=-63+12x
Step 1.5.2
Divide each term in 27y=-63+12x by 27 and simplify.
Step 1.5.2.1
Divide each term in 27y=-63+12x by 27.
27y27=-6327+12x27
Step 1.5.2.2
Simplify the left side.
Step 1.5.2.2.1
Cancel the common factor of 27.
Step 1.5.2.2.1.1
Cancel the common factor.
27y27=-6327+12x27
Step 1.5.2.2.1.2
Divide y by 1.
y=-6327+12x27
y=-6327+12x27
y=-6327+12x27
Step 1.5.2.3
Simplify the right side.
Step 1.5.2.3.1
Simplify each term.
Step 1.5.2.3.1.1
Cancel the common factor of -63 and 27.
Step 1.5.2.3.1.1.1
Factor 9 out of -63.
y=9(-7)27+12x27
Step 1.5.2.3.1.1.2
Cancel the common factors.
Step 1.5.2.3.1.1.2.1
Factor 9 out of 27.
y=9⋅-79⋅3+12x27
Step 1.5.2.3.1.1.2.2
Cancel the common factor.
y=9⋅-79⋅3+12x27
Step 1.5.2.3.1.1.2.3
Rewrite the expression.
y=-73+12x27
y=-73+12x27
y=-73+12x27
Step 1.5.2.3.1.2
Move the negative in front of the fraction.
y=-73+12x27
Step 1.5.2.3.1.3
Cancel the common factor of 12 and 27.
Step 1.5.2.3.1.3.1
Factor 3 out of 12x.
y=-73+3(4x)27
Step 1.5.2.3.1.3.2
Cancel the common factors.
Step 1.5.2.3.1.3.2.1
Factor 3 out of 27.
y=-73+3(4x)3(9)
Step 1.5.2.3.1.3.2.2
Cancel the common factor.
y=-73+3(4x)3⋅9
Step 1.5.2.3.1.3.2.3
Rewrite the expression.
y=-73+4x9
y=-73+4x9
y=-73+4x9
y=-73+4x9
y=-73+4x9
y=-73+4x9
y=-73+4x9
Step 1.6
The solution is the set of ordered pairs that make y=-73+4x9 true.
(x,-73+4x9)
(x,-73+4x9)
Step 2
Since the system is always true, the equations are equal and the graphs are the same line. Thus, the system is dependent.
Dependent
Step 3