Algebra Examples

Solve by Addition/Elimination
4x+y-2z=04x+y2z=0 , 2x-3y+3z=92x3y+3z=9 , -6x-2y+z=06x2y+z=0
Step 1
Choose two equations and eliminate one variable. In this case, eliminate yy.
4x+y-2z=04x+y2z=0
2x-3y+3z=92x3y+3z=9
Step 2
Eliminate yy from the system.
Tap for more steps...
Step 2.1
Multiply each equation by the value that makes the coefficients of yy opposite.
(3)(4x+y-2z)=(3)(0)(3)(4x+y2z)=(3)(0)
2x-3y+3z=92x3y+3z=9
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify the left side.
Tap for more steps...
Step 2.2.1.1
Simplify (3)(4x+y-2z)(3)(4x+y2z).
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
3(4x)+3y+3(-2z)=(3)(0)3(4x)+3y+3(2z)=(3)(0)
2x-3y+3z=92x3y+3z=9
Step 2.2.1.1.2
Simplify.
Tap for more steps...
Step 2.2.1.1.2.1
Multiply 44 by 33.
12x+3y+3(-2z)=(3)(0)12x+3y+3(2z)=(3)(0)
2x-3y+3z=92x3y+3z=9
Step 2.2.1.1.2.2
Multiply -22 by 33.
12x+3y-6z=(3)(0)12x+3y6z=(3)(0)
2x-3y+3z=92x3y+3z=9
12x+3y-6z=(3)(0)12x+3y6z=(3)(0)
2x-3y+3z=92x3y+3z=9
12x+3y-6z=(3)(0)12x+3y6z=(3)(0)
2x-3y+3z=92x3y+3z=9
12x+3y-6z=(3)(0)12x+3y6z=(3)(0)
2x-3y+3z=92x3y+3z=9
Step 2.2.2
Simplify the right side.
Tap for more steps...
Step 2.2.2.1
Multiply 33 by 00.
12x+3y-6z=012x+3y6z=0
2x-3y+3z=92x3y+3z=9
12x+3y-6z=012x+3y6z=0
2x-3y+3z=92x3y+3z=9
12x+3y-6z=012x+3y6z=0
2x-3y+3z=92x3y+3z=9
Step 2.3
Add the two equations together to eliminate yy from the system.
1122xx++33yy-66zz==00
++22xx-33yy++33zz==99
1144xx-33zz==99
Step 2.4
The resultant equation has yy eliminated.
14x-3z=914x3z=9
14x-3z=914x3z=9
Step 3
Choose another two equations and eliminate yy.
2x-3y+3z=92x3y+3z=9
-6x-2y+z=06x2y+z=0
Step 4
Eliminate yy from the system.
Tap for more steps...
Step 4.1
Multiply each equation by the value that makes the coefficients of yy opposite.
(-2)(2x-3y+3z)=(-2)(9)(2)(2x3y+3z)=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Simplify the left side.
Tap for more steps...
Step 4.2.1.1
Simplify (-2)(2x-3y+3z)(2)(2x3y+3z).
Tap for more steps...
Step 4.2.1.1.1
Apply the distributive property.
-2(2x)-2(-3y)-2(3z)=(-2)(9)2(2x)2(3y)2(3z)=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2.1.1.2
Simplify.
Tap for more steps...
Step 4.2.1.1.2.1
Multiply 22 by -22.
-4x-2(-3y)-2(3z)=(-2)(9)4x2(3y)2(3z)=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2.1.1.2.2
Multiply -33 by -22.
-4x+6y-2(3z)=(-2)(9)4x+6y2(3z)=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2.1.1.2.3
Multiply 33 by -22.
-4x+6y-6z=(-2)(9)4x+6y6z=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
-4x+6y-6z=(-2)(9)4x+6y6z=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
-4x+6y-6z=(-2)(9)4x+6y6z=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
-4x+6y-6z=(-2)(9)4x+6y6z=(2)(9)
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2.2
Simplify the right side.
Tap for more steps...
Step 4.2.2.1
Multiply -22 by 99.
-4x+6y-6z=-184x+6y6z=18
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
-4x+6y-6z=-184x+6y6z=18
(3)(-6x-2y+z)=(3)(0)(3)(6x2y+z)=(3)(0)
Step 4.2.3
Simplify the left side.
Tap for more steps...
Step 4.2.3.1
Simplify (3)(-6x-2y+z)(3)(6x2y+z).
Tap for more steps...
Step 4.2.3.1.1
Apply the distributive property.
-4x+6y-6z=-184x+6y6z=18
3(-6x)+3(-2y)+3z=(3)(0)3(6x)+3(2y)+3z=(3)(0)
Step 4.2.3.1.2
Simplify.
Tap for more steps...
Step 4.2.3.1.2.1
Multiply -66 by 33.
-4x+6y-6z=-184x+6y6z=18
-18x+3(-2y)+3z=(3)(0)18x+3(2y)+3z=(3)(0)
Step 4.2.3.1.2.2
Multiply -22 by 33.
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=(3)(0)18x6y+3z=(3)(0)
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=(3)(0)18x6y+3z=(3)(0)
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=(3)(0)18x6y+3z=(3)(0)
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=(3)(0)18x6y+3z=(3)(0)
Step 4.2.4
Simplify the right side.
Tap for more steps...
Step 4.2.4.1
Multiply 33 by 00.
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=018x6y+3z=0
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=018x6y+3z=0
-4x+6y-6z=-184x+6y6z=18
-18x-6y+3z=018x6y+3z=0
Step 4.3
Add the two equations together to eliminate yy from the system.
-44xx++66yy-66zz==-1188
++-1188xx-66yy++33zz==00
-2222xx-33zz==-1188
Step 4.4
The resultant equation has yy eliminated.
-22x-3z=-1822x3z=18
-22x-3z=-1822x3z=18
Step 5
Take the resultant equations and eliminate another variable. In this case, eliminate zz.
14x-3z=914x3z=9
-22x-3z=-1822x3z=18
Step 6
Eliminate zz from the system.
Tap for more steps...
Step 6.1
Multiply each equation by the value that makes the coefficients of zz opposite.
(-1)(14x-3z)=(-1)(9)(1)(14x3z)=(1)(9)
-22x-3z=-1822x3z=18
Step 6.2
Simplify.
Tap for more steps...
Step 6.2.1
Simplify the left side.
Tap for more steps...
Step 6.2.1.1
Simplify (-1)(14x-3z)(1)(14x3z).
Tap for more steps...
Step 6.2.1.1.1
Apply the distributive property.
-1(14x)-1(-3z)=(-1)(9)1(14x)1(3z)=(1)(9)
-22x-3z=-1822x3z=18
Step 6.2.1.1.2
Multiply.
Tap for more steps...
Step 6.2.1.1.2.1
Multiply 1414 by -11.
-14x-1(-3z)=(-1)(9)14x1(3z)=(1)(9)
-22x-3z=-1822x3z=18
Step 6.2.1.1.2.2
Multiply -33 by -11.
-14x+3z=(-1)(9)14x+3z=(1)(9)
-22x-3z=-1822x3z=18
-14x+3z=(-1)(9)14x+3z=(1)(9)
-22x-3z=-1822x3z=18
-14x+3z=(-1)(9)14x+3z=(1)(9)
-22x-3z=-1822x3z=18
-14x+3z=(-1)(9)14x+3z=(1)(9)
-22x-3z=-1822x3z=18
Step 6.2.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1
Multiply -11 by 99.
-14x+3z=-914x+3z=9
-22x-3z=-1822x3z=18
-14x+3z=-914x+3z=9
-22x-3z=-1822x3z=18
-14x+3z=-914x+3z=9
-22x-3z=-1822x3z=18
Step 6.3
Add the two equations together to eliminate zz from the system.
-1144xx++33zz==-99
++-2222xx-33zz==-1188
-3366xx==-2277
Step 6.4
The resultant equation has zz eliminated.
-36x=-2736x=27
Step 6.5
Divide each term in -36x=-2736x=27 by -3636 and simplify.
Tap for more steps...
Step 6.5.1
Divide each term in -36x=-2736x=27 by -3636.
-36x-36=-27-3636x36=2736
Step 6.5.2
Simplify the left side.
Tap for more steps...
Step 6.5.2.1
Cancel the common factor of -3636.
Tap for more steps...
Step 6.5.2.1.1
Cancel the common factor.
-36x-36=-27-36
Step 6.5.2.1.2
Divide x by 1.
x=-27-36
x=-27-36
x=-27-36
Step 6.5.3
Simplify the right side.
Tap for more steps...
Step 6.5.3.1
Cancel the common factor of -27 and -36.
Tap for more steps...
Step 6.5.3.1.1
Factor -9 out of -27.
x=-9(3)-36
Step 6.5.3.1.2
Cancel the common factors.
Tap for more steps...
Step 6.5.3.1.2.1
Factor -9 out of -36.
x=-93-94
Step 6.5.3.1.2.2
Cancel the common factor.
x=-93-94
Step 6.5.3.1.2.3
Rewrite the expression.
x=34
x=34
x=34
x=34
x=34
x=34
Step 7
Substitute the value of x into an equation with y eliminated already and solve for the remaining variable.
Tap for more steps...
Step 7.1
Substitute the value of x into an equation with y eliminated already.
14(34)-3z=9
Step 7.2
Solve for z.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 7.2.1.1.1
Factor 2 out of 14.
2(7)34-3z=9
Step 7.2.1.1.2
Factor 2 out of 4.
27322-3z=9
Step 7.2.1.1.3
Cancel the common factor.
27322-3z=9
Step 7.2.1.1.4
Rewrite the expression.
7(32)-3z=9
7(32)-3z=9
Step 7.2.1.2
Combine 7 and 32.
732-3z=9
Step 7.2.1.3
Multiply 7 by 3.
212-3z=9
212-3z=9
Step 7.2.2
Move all terms not containing z to the right side of the equation.
Tap for more steps...
Step 7.2.2.1
Subtract 212 from both sides of the equation.
-3z=9-212
Step 7.2.2.2
To write 9 as a fraction with a common denominator, multiply by 22.
-3z=922-212
Step 7.2.2.3
Combine 9 and 22.
-3z=922-212
Step 7.2.2.4
Combine the numerators over the common denominator.
-3z=92-212
Step 7.2.2.5
Simplify the numerator.
Tap for more steps...
Step 7.2.2.5.1
Multiply 9 by 2.
-3z=18-212
Step 7.2.2.5.2
Subtract 21 from 18.
-3z=-32
-3z=-32
Step 7.2.2.6
Move the negative in front of the fraction.
-3z=-32
-3z=-32
Step 7.2.3
Divide each term in -3z=-32 by -3 and simplify.
Tap for more steps...
Step 7.2.3.1
Divide each term in -3z=-32 by -3.
-3z-3=-32-3
Step 7.2.3.2
Simplify the left side.
Tap for more steps...
Step 7.2.3.2.1
Cancel the common factor of -3.
Tap for more steps...
Step 7.2.3.2.1.1
Cancel the common factor.
-3z-3=-32-3
Step 7.2.3.2.1.2
Divide z by 1.
z=-32-3
z=-32-3
z=-32-3
Step 7.2.3.3
Simplify the right side.
Tap for more steps...
Step 7.2.3.3.1
Multiply the numerator by the reciprocal of the denominator.
z=-321-3
Step 7.2.3.3.2
Cancel the common factor of 3.
Tap for more steps...
Step 7.2.3.3.2.1
Move the leading negative in -32 into the numerator.
z=-321-3
Step 7.2.3.3.2.2
Factor 3 out of -3.
z=3(-1)21-3
Step 7.2.3.3.2.3
Factor 3 out of -3.
z=3-1213-1
Step 7.2.3.3.2.4
Cancel the common factor.
z=3-1213-1
Step 7.2.3.3.2.5
Rewrite the expression.
z=-121-1
z=-121-1
Step 7.2.3.3.3
Multiply -12 by 1-1.
z=-12-1
Step 7.2.3.3.4
Multiply 2 by -1.
z=-1-2
Step 7.2.3.3.5
Dividing two negative values results in a positive value.
z=12
z=12
z=12
z=12
z=12
Step 8
Substitute the value of each known variable into one of the initial equations and solve for the last variable.
Tap for more steps...
Step 8.1
Substitute the value of each known variable into one of the initial equations.
4(34)+y-2(12)=0
Step 8.2
Solve for y.
Tap for more steps...
Step 8.2.1
Simplify 4(34)+y-2(12).
Tap for more steps...
Step 8.2.1.1
Simplify each term.
Tap for more steps...
Step 8.2.1.1.1
Cancel the common factor of 4.
Tap for more steps...
Step 8.2.1.1.1.1
Cancel the common factor.
4(34)+y-2(12)=0
Step 8.2.1.1.1.2
Rewrite the expression.
3+y-2(12)=0
3+y-2(12)=0
Step 8.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 8.2.1.1.2.1
Factor 2 out of -2.
3+y+2(-1)12=0
Step 8.2.1.1.2.2
Cancel the common factor.
3+y+2-112=0
Step 8.2.1.1.2.3
Rewrite the expression.
3+y-1=0
3+y-1=0
3+y-1=0
Step 8.2.1.2
Subtract 1 from 3.
y+2=0
y+2=0
Step 8.2.2
Subtract 2 from both sides of the equation.
y=-2
y=-2
y=-2
Step 9
The solution to the system of equations can be represented as a point.
(34,-2,12)
Step 10
The result can be shown in multiple forms.
Point Form:
(34,-2,12)
Equation Form:
x=34,y=-2,z=12
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay