Algebra Examples
7x2-4x-3x+27x2−4x−3x+2
Step 1
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 |
Step 1.2
Divide the highest order term in the dividend 7x27x2 by the highest order term in divisor xx.
7x7x | |||||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 |
Step 1.3
Multiply the new quotient term by the divisor.
7x7x | |||||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
+ | 7x27x2 | + | 14x14x |
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in 7x2+14x7x2+14x
7x7x | |||||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x |
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
7x7x | |||||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x |
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
7x7x | |||||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x | - | 33 |
Step 1.7
Divide the highest order term in the dividend -18x−18x by the highest order term in divisor xx.
7x7x | - | 1818 | |||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x | - | 33 |
Step 1.8
Multiply the new quotient term by the divisor.
7x7x | - | 1818 | |||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x | - | 33 | ||||||
- | 18x18x | - | 3636 |
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in -18x-36−18x−36
7x7x | - | 1818 | |||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x | - | 33 | ||||||
+ | 18x18x | + | 3636 |
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
7x7x | - | 1818 | |||||||
xx | + | 22 | 7x27x2 | - | 4x4x | - | 33 | ||
- | 7x27x2 | - | 14x14x | ||||||
- | 18x18x | - | 33 | ||||||
+ | 18x18x | + | 3636 | ||||||
+ | 3333 |
Step 1.11
The final answer is the quotient plus the remainder over the divisor.
7x-18+33x+27x−18+33x+2
7x-18+33x+27x−18+33x+2
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.
3333