Algebra Examples
2x+4-2x-42x+4−2x−4
Step 1
To write 2x+42x+4 as a fraction with a common denominator, multiply by x-4x-4x−4x−4.
2x+4⋅x-4x-4-2x-42x+4⋅x−4x−4−2x−4
Step 2
To write -2x-4−2x−4 as a fraction with a common denominator, multiply by x+4x+4x+4x+4.
2x+4⋅x-4x-4-2x-4⋅x+4x+42x+4⋅x−4x−4−2x−4⋅x+4x+4
Step 3
Step 3.1
Multiply 2x+42x+4 by x-4x-4x−4x−4.
2(x-4)(x+4)(x-4)-2x-4⋅x+4x+42(x−4)(x+4)(x−4)−2x−4⋅x+4x+4
Step 3.2
Multiply 2x-42x−4 by x+4x+4x+4x+4.
2(x-4)(x+4)(x-4)-2(x+4)(x-4)(x+4)2(x−4)(x+4)(x−4)−2(x+4)(x−4)(x+4)
Step 3.3
Reorder the factors of (x-4)(x+4)(x−4)(x+4).
2(x-4)(x+4)(x-4)-2(x+4)(x+4)(x-4)2(x−4)(x+4)(x−4)−2(x+4)(x+4)(x−4)
2(x-4)(x+4)(x-4)-2(x+4)(x+4)(x-4)2(x−4)(x+4)(x−4)−2(x+4)(x+4)(x−4)
Step 4
Combine the numerators over the common denominator.
2(x-4)-2(x+4)(x+4)(x-4)2(x−4)−2(x+4)(x+4)(x−4)
Step 5
Step 5.1
Factor 22 out of 2(x-4)-2(x+4)2(x−4)−2(x+4).
Step 5.1.1
Factor 22 out of -2(x+4)−2(x+4).
2(x-4)+2(-(x+4))(x+4)(x-4)2(x−4)+2(−(x+4))(x+4)(x−4)
Step 5.1.2
Factor 22 out of 2(x-4)+2(-(x+4))2(x−4)+2(−(x+4)).
2(x-4-(x+4))(x+4)(x-4)2(x−4−(x+4))(x+4)(x−4)
2(x-4-(x+4))(x+4)(x-4)2(x−4−(x+4))(x+4)(x−4)
Step 5.2
Apply the distributive property.
2(x-4-x-1⋅4)(x+4)(x-4)
Step 5.3
Multiply -1 by 4.
2(x-4-x-4)(x+4)(x-4)
Step 5.4
Subtract x from x.
2(0-4-4)(x+4)(x-4)
Step 5.5
Subtract 4 from 0.
2(-4-4)(x+4)(x-4)
Step 5.6
Subtract 4 from -4.
2⋅-8(x+4)(x-4)
2⋅-8(x+4)(x-4)
Step 6
Step 6.1
Multiply 2 by -8.
-16(x+4)(x-4)
Step 6.2
Move the negative in front of the fraction.
-16(x+4)(x-4)
-16(x+4)(x-4)