Algebra Examples

11 , 33 , -66
Step 1
Roots are the points where the graph intercepts with the x-axis (y=0)(y=0).
y=0y=0 at the roots
Step 2
The root at x=1x=1 was found by solving for xx when x-(1)=yx(1)=y and y=0y=0.
The factor is x-1x1
Step 3
The root at x=3x=3 was found by solving for xx when x-(3)=yx(3)=y and y=0y=0.
The factor is x-3x3
Step 4
The root at x=-6x=6 was found by solving for xx when x-(-6)=yx(6)=y and y=0y=0.
The factor is x+6x+6
Step 5
Combine all the factors into a single equation.
y=(x-1)(x-3)(x+6)y=(x1)(x3)(x+6)
Step 6
Multiply all the factors to simplify the equation y=(x-1)(x-3)(x+6)y=(x1)(x3)(x+6).
Tap for more steps...
Step 6.1
Expand (x-1)(x-3)(x1)(x3) using the FOIL Method.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
y=(x(x-3)-1(x-3))(x+6)y=(x(x3)1(x3))(x+6)
Step 6.1.2
Apply the distributive property.
y=(xx+x-3-1(x-3))(x+6)y=(xx+x31(x3))(x+6)
Step 6.1.3
Apply the distributive property.
y=(xx+x-3-1x-1-3)(x+6)y=(xx+x31x13)(x+6)
y=(xx+x-3-1x-1-3)(x+6)y=(xx+x31x13)(x+6)
Step 6.2
Simplify and combine like terms.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply xx by xx.
y=(x2+x-3-1x-1-3)(x+6)y=(x2+x31x13)(x+6)
Step 6.2.1.2
Move -33 to the left of xx.
y=(x2-3x-1x-1-3)(x+6)y=(x23x1x13)(x+6)
Step 6.2.1.3
Rewrite -1x1x as -xx.
y=(x2-3x-x-1-3)(x+6)y=(x23xx13)(x+6)
Step 6.2.1.4
Multiply -11 by -33.
y=(x2-3x-x+3)(x+6)y=(x23xx+3)(x+6)
y=(x2-3x-x+3)(x+6)y=(x23xx+3)(x+6)
Step 6.2.2
Subtract xx from -3x3x.
y=(x2-4x+3)(x+6)y=(x24x+3)(x+6)
y=(x2-4x+3)(x+6)y=(x24x+3)(x+6)
Step 6.3
Expand (x2-4x+3)(x+6)(x24x+3)(x+6) by multiplying each term in the first expression by each term in the second expression.
y=x2x+x26-4xx-4x6+3x+36y=x2x+x264xx4x6+3x+36
Step 6.4
Simplify terms.
Tap for more steps...
Step 6.4.1
Simplify each term.
Tap for more steps...
Step 6.4.1.1
Multiply x2x2 by xx by adding the exponents.
Tap for more steps...
Step 6.4.1.1.1
Multiply x2x2 by xx.
Tap for more steps...
Step 6.4.1.1.1.1
Raise xx to the power of 11.
y=x2x+x26-4xx-4x6+3x+36y=x2x+x264xx4x6+3x+36
Step 6.4.1.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
y=x2+1+x26-4xx-4x6+3x+36y=x2+1+x264xx4x6+3x+36
y=x2+1+x26-4xx-4x6+3x+36y=x2+1+x264xx4x6+3x+36
Step 6.4.1.1.2
Add 22 and 11.
y=x3+x26-4xx-4x6+3x+36y=x3+x264xx4x6+3x+36
y=x3+x26-4xx-4x6+3x+36y=x3+x264xx4x6+3x+36
Step 6.4.1.2
Move 66 to the left of x2x2.
y=x3+6x2-4xx-4x6+3x+36y=x3+6x24xx4x6+3x+36
Step 6.4.1.3
Multiply xx by xx by adding the exponents.
Tap for more steps...
Step 6.4.1.3.1
Move xx.
y=x3+6x2-4(xx)-4x6+3x+36y=x3+6x24(xx)4x6+3x+36
Step 6.4.1.3.2
Multiply xx by xx.
y=x3+6x2-4x2-4x6+3x+36y=x3+6x24x24x6+3x+36
y=x3+6x2-4x2-4x6+3x+36y=x3+6x24x24x6+3x+36
Step 6.4.1.4
Multiply 66 by -44.
y=x3+6x2-4x2-24x+3x+36y=x3+6x24x224x+3x+36
Step 6.4.1.5
Multiply 3 by 6.
y=x3+6x2-4x2-24x+3x+18
y=x3+6x2-4x2-24x+3x+18
Step 6.4.2
Simplify by adding terms.
Tap for more steps...
Step 6.4.2.1
Subtract 4x2 from 6x2.
y=x3+2x2-24x+3x+18
Step 6.4.2.2
Add -24x and 3x.
y=x3+2x2-21x+18
y=x3+2x2-21x+18
y=x3+2x2-21x+18
y=x3+2x2-21x+18
Step 7
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay