Algebra Examples
11 , 33 , -6−6
Step 1
Roots are the points where the graph intercepts with the x-axis (y=0)(y=0).
y=0y=0 at the roots
Step 2
The root at x=1x=1 was found by solving for xx when x-(1)=yx−(1)=y and y=0y=0.
The factor is x-1x−1
Step 3
The root at x=3x=3 was found by solving for xx when x-(3)=yx−(3)=y and y=0y=0.
The factor is x-3x−3
Step 4
The root at x=-6x=−6 was found by solving for xx when x-(-6)=yx−(−6)=y and y=0y=0.
The factor is x+6x+6
Step 5
Combine all the factors into a single equation.
y=(x-1)(x-3)(x+6)y=(x−1)(x−3)(x+6)
Step 6
Step 6.1
Expand (x-1)(x-3)(x−1)(x−3) using the FOIL Method.
Step 6.1.1
Apply the distributive property.
y=(x(x-3)-1(x-3))(x+6)y=(x(x−3)−1(x−3))(x+6)
Step 6.1.2
Apply the distributive property.
y=(x⋅x+x⋅-3-1(x-3))(x+6)y=(x⋅x+x⋅−3−1(x−3))(x+6)
Step 6.1.3
Apply the distributive property.
y=(x⋅x+x⋅-3-1x-1⋅-3)(x+6)y=(x⋅x+x⋅−3−1x−1⋅−3)(x+6)
y=(x⋅x+x⋅-3-1x-1⋅-3)(x+6)y=(x⋅x+x⋅−3−1x−1⋅−3)(x+6)
Step 6.2
Simplify and combine like terms.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Multiply xx by xx.
y=(x2+x⋅-3-1x-1⋅-3)(x+6)y=(x2+x⋅−3−1x−1⋅−3)(x+6)
Step 6.2.1.2
Move -3−3 to the left of xx.
y=(x2-3⋅x-1x-1⋅-3)(x+6)y=(x2−3⋅x−1x−1⋅−3)(x+6)
Step 6.2.1.3
Rewrite -1x−1x as -x−x.
y=(x2-3x-x-1⋅-3)(x+6)y=(x2−3x−x−1⋅−3)(x+6)
Step 6.2.1.4
Multiply -1−1 by -3−3.
y=(x2-3x-x+3)(x+6)y=(x2−3x−x+3)(x+6)
y=(x2-3x-x+3)(x+6)y=(x2−3x−x+3)(x+6)
Step 6.2.2
Subtract xx from -3x−3x.
y=(x2-4x+3)(x+6)y=(x2−4x+3)(x+6)
y=(x2-4x+3)(x+6)y=(x2−4x+3)(x+6)
Step 6.3
Expand (x2-4x+3)(x+6)(x2−4x+3)(x+6) by multiplying each term in the first expression by each term in the second expression.
y=x2x+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x2x+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
Step 6.4
Simplify terms.
Step 6.4.1
Simplify each term.
Step 6.4.1.1
Multiply x2x2 by xx by adding the exponents.
Step 6.4.1.1.1
Multiply x2x2 by xx.
Step 6.4.1.1.1.1
Raise xx to the power of 11.
y=x2x+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x2x+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
Step 6.4.1.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
y=x2+1+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x2+1+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
y=x2+1+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x2+1+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
Step 6.4.1.1.2
Add 22 and 11.
y=x3+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x3+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
y=x3+x2⋅6-4x⋅x-4x⋅6+3x+3⋅6y=x3+x2⋅6−4x⋅x−4x⋅6+3x+3⋅6
Step 6.4.1.2
Move 66 to the left of x2x2.
y=x3+6⋅x2-4x⋅x-4x⋅6+3x+3⋅6y=x3+6⋅x2−4x⋅x−4x⋅6+3x+3⋅6
Step 6.4.1.3
Multiply xx by xx by adding the exponents.
Step 6.4.1.3.1
Move xx.
y=x3+6x2-4(x⋅x)-4x⋅6+3x+3⋅6y=x3+6x2−4(x⋅x)−4x⋅6+3x+3⋅6
Step 6.4.1.3.2
Multiply xx by xx.
y=x3+6x2-4x2-4x⋅6+3x+3⋅6y=x3+6x2−4x2−4x⋅6+3x+3⋅6
y=x3+6x2-4x2-4x⋅6+3x+3⋅6y=x3+6x2−4x2−4x⋅6+3x+3⋅6
Step 6.4.1.4
Multiply 66 by -4−4.
y=x3+6x2-4x2-24x+3x+3⋅6y=x3+6x2−4x2−24x+3x+3⋅6
Step 6.4.1.5
Multiply 3 by 6.
y=x3+6x2-4x2-24x+3x+18
y=x3+6x2-4x2-24x+3x+18
Step 6.4.2
Simplify by adding terms.
Step 6.4.2.1
Subtract 4x2 from 6x2.
y=x3+2x2-24x+3x+18
Step 6.4.2.2
Add -24x and 3x.
y=x3+2x2-21x+18
y=x3+2x2-21x+18
y=x3+2x2-21x+18
y=x3+2x2-21x+18
Step 7