Algebra Examples
√3x8√3x8
Step 1
Step 1.1
Factor the perfect power 1212 out of 3x3x.
√12(3x)8√12(3x)8
Step 1.2
Factor the perfect power 2222 out of 88.
√12(3x)22⋅2√12(3x)22⋅2
Step 1.3
Rearrange the fraction 12(3x)22⋅212(3x)22⋅2.
√(12)23x2√(12)23x2
√(12)23x2√(12)23x2
Step 2
Pull terms out from under the radical.
12√3x212√3x2
Step 3
Rewrite √3x2√3x2 as √3x√2√3x√2.
12⋅√3x√212⋅√3x√2
Step 4
Multiply √3x√2√3x√2 by √2√2√2√2.
12(√3x√2⋅√2√2)12(√3x√2⋅√2√2)
Step 5
Step 5.1
Multiply √3x√2√3x√2 by √2√2√2√2.
12⋅√3x√2√2√212⋅√3x√2√2√2
Step 5.2
Raise √2√2 to the power of 11.
12⋅√3x√2√21√212⋅√3x√2√21√2
Step 5.3
Raise √2√2 to the power of 11.
12⋅√3x√2√21√2112⋅√3x√2√21√21
Step 5.4
Use the power rule aman=am+naman=am+n to combine exponents.
12⋅√3x√2√21+112⋅√3x√2√21+1
Step 5.5
Add 11 and 11.
12⋅√3x√2√2212⋅√3x√2√22
Step 5.6
Rewrite √22√22 as 22.
Step 5.6.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
12⋅√3x√2(212)212⋅√3x√2(212)2
Step 5.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
12⋅√3x√2212⋅212⋅√3x√2212⋅2
Step 5.6.3
Combine 1212 and 22.
12⋅√3x√222212⋅√3x√2222
Step 5.6.4
Cancel the common factor of 22.
Step 5.6.4.1
Cancel the common factor.
12⋅√3x√2222
Step 5.6.4.2
Rewrite the expression.
12⋅√3x√221
12⋅√3x√221
Step 5.6.5
Evaluate the exponent.
12⋅√3x√22
12⋅√3x√22
12⋅√3x√22
Step 6
Step 6.1
Combine using the product rule for radicals.
12⋅√3x⋅22
Step 6.2
Multiply 2 by 3.
12⋅√6x2
12⋅√6x2
Step 7
Step 7.1
Multiply 12 by √6x2.
√6x2⋅2
Step 7.2
Multiply 2 by 2.
√6x4
√6x4