Algebra Examples
4x2-5x4x2−5x
Step 1
Factor out the 44
4(x2-5x4)4(x2−5x4)
Step 2
Step 2.1
Multiply the numerator by the reciprocal of the denominator.
(-(54⋅12))2(−(54⋅12))2
Step 2.2
Multiply 54⋅1254⋅12.
Step 2.2.1
Multiply 5454 by 1212.
(-54⋅2)2(−54⋅2)2
Step 2.2.2
Multiply 44 by 22.
(-58)2(−58)2
(-58)2(−58)2
Step 2.3
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.3.1
Apply the product rule to -58−58.
(-1)2(58)2(−1)2(58)2
Step 2.3.2
Apply the product rule to 5858.
(-1)25282(−1)25282
(-1)25282(−1)25282
Step 2.4
Raise -1−1 to the power of 22.
1528215282
Step 2.5
Multiply 52825282 by 11.
52825282
Step 2.6
Raise 55 to the power of 22.
25822582
Step 2.7
Raise 88 to the power of 22.
25642564
25642564
Step 3
Add 25642564 to get the perfect square trinomial.
4(x2-5x4+2564)4(x2−5x4+2564)
Step 4
Step 4.1
Apply the distributive property.
4x2+4(-5x4)+4(2564)4x2+4(−5x4)+4(2564)
Step 4.2
Simplify.
Step 4.2.1
Cancel the common factor of 44.
Step 4.2.1.1
Move the leading negative in -5x4−5x4 into the numerator.
4x2+4-5x4+4(2564)4x2+4−5x4+4(2564)
Step 4.2.1.2
Cancel the common factor.
4x2+4-5x4+4(2564)4x2+4−5x4+4(2564)
Step 4.2.1.3
Rewrite the expression.
4x2-5x+4(2564)4x2−5x+4(2564)
4x2-5x+4(2564)4x2−5x+4(2564)
Step 4.2.2
Cancel the common factor of 44.
Step 4.2.2.1
Factor 44 out of 6464.
4x2-5x+4254(16)4x2−5x+4254(16)
Step 4.2.2.2
Cancel the common factor.
4x2-5x+4254⋅164x2−5x+4254⋅16
Step 4.2.2.3
Rewrite the expression.
4x2-5x+25164x2−5x+2516
4x2-5x+25164x2−5x+2516
4x2-5x+25164x2−5x+2516
4x2-5x+25164x2−5x+2516