Algebra Examples
[4-301]-[4-1-12-2][4−301]−[4−1−12−2]
Step 1
Subtract the corresponding elements.
[4-4-3+10+121+2][4−4−3+10+121+2]
Step 2
Step 2.1
Subtract 44 from 44.
[0-3+10+121+2][0−3+10+121+2]
Step 2.2
Add -3−3 and 11.
[0-20+121+2][0−20+121+2]
Step 2.3
Add 00 and 1212.
[0-2121+2][0−2121+2]
Step 2.4
Add 11 and 22.
[0-2123][0−2123]
[0-2123][0−2123]
Step 3
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 4
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0⋅3-12⋅-20⋅3−12⋅−2
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 00 by 33.
0-12⋅-20−12⋅−2
Step 4.2.1.2
Multiply -12−12 by -2−2.
0+240+24
0+240+24
Step 4.2.2
Add 00 and 2424.
2424
2424
2424
Step 5
Since the determinant is non-zero, the inverse exists.
Step 6
Substitute the known values into the formula for the inverse.
124[32-120]124[32−120]
Step 7
Multiply 124124 by each element of the matrix.
[124⋅3124⋅2124⋅-12124⋅0][124⋅3124⋅2124⋅−12124⋅0]
Step 8
Step 8.1
Cancel the common factor of 33.
Step 8.1.1
Factor 33 out of 2424.
[13(8)⋅3124⋅2124⋅-12124⋅0]⎡⎣13(8)⋅3124⋅2124⋅−12124⋅0⎤⎦
Step 8.1.2
Cancel the common factor.
[13⋅8⋅3124⋅2124⋅-12124⋅0]
Step 8.1.3
Rewrite the expression.
[18124⋅2124⋅-12124⋅0]
[18124⋅2124⋅-12124⋅0]
Step 8.2
Cancel the common factor of 2.
Step 8.2.1
Factor 2 out of 24.
[1812(12)⋅2124⋅-12124⋅0]
Step 8.2.2
Cancel the common factor.
[1812⋅12⋅2124⋅-12124⋅0]
Step 8.2.3
Rewrite the expression.
[18112124⋅-12124⋅0]
[18112124⋅-12124⋅0]
Step 8.3
Cancel the common factor of 12.
Step 8.3.1
Factor 12 out of 24.
[18112112(2)⋅-12124⋅0]
Step 8.3.2
Factor 12 out of -12.
[18112112⋅2⋅(12⋅-1)124⋅0]
Step 8.3.3
Cancel the common factor.
[18112112⋅2⋅(12⋅-1)124⋅0]
Step 8.3.4
Rewrite the expression.
[1811212⋅-1124⋅0]
[1811212⋅-1124⋅0]
Step 8.4
Combine 12 and -1.
[18112-12124⋅0]
Step 8.5
Move the negative in front of the fraction.
[18112-12124⋅0]
Step 8.6
Multiply 124 by 0.
[18112-120]
[18112-120]