Algebra Examples
[0121110210100211]⎡⎢
⎢
⎢
⎢⎣0121110210100211⎤⎥
⎥
⎥
⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|102010211|∣∣
∣∣102010211∣∣
∣∣
Step 1.4
Multiply element a11a11 by its cofactor.
0|102010211|0∣∣
∣∣102010211∣∣
∣∣
Step 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|121010211|∣∣
∣∣121010211∣∣
∣∣
Step 1.6
Multiply element a21a21 by its cofactor.
-1|121010211|−1∣∣
∣∣121010211∣∣
∣∣
Step 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|121102211|∣∣
∣∣121102211∣∣
∣∣
Step 1.8
Multiply element a31a31 by its cofactor.
1|121102211|1∣∣
∣∣121102211∣∣
∣∣
Step 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|121102010|∣∣
∣∣121102010∣∣
∣∣
Step 1.10
Multiply element a41a41 by its cofactor.
0|121102010|0∣∣
∣∣121102010∣∣
∣∣
Step 1.11
Add the terms together.
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣∣
∣∣102010211∣∣
∣∣−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
0|102010211|-1|121010211|+1|121102211|+0|121102010|
Step 2
Multiply 0 by |102010211|.
0-1|121010211|+1|121102211|+0|121102010|
Step 3
Multiply 0 by |121102010|.
0-1|121010211|+1|121102211|+0
Step 4
Step 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
Step 4.1.4
Multiply element a21 by its cofactor.
0|2111|
Step 4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
Step 4.1.6
Multiply element a22 by its cofactor.
1|1121|
Step 4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
Step 4.1.8
Multiply element a23 by its cofactor.
0|1221|
Step 4.1.9
Add the terms together.
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
Step 4.2
Multiply 0 by |2111|.
0-1(0+1|1121|+0|1221|)+1|121102211|+0
Step 4.3
Multiply 0 by |1221|.
0-1(0+1|1121|+0)+1|121102211|+0
Step 4.4
Evaluate |1121|.
Step 4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1(0+1(1⋅1-2⋅1)+0)+1|121102211|+0
Step 4.4.2
Simplify the determinant.
Step 4.4.2.1
Simplify each term.
Step 4.4.2.1.1
Multiply 1 by 1.
0-1(0+1(1-2⋅1)+0)+1|121102211|+0
Step 4.4.2.1.2
Multiply -2 by 1.
0-1(0+1(1-2)+0)+1|121102211|+0
0-1(0+1(1-2)+0)+1|121102211|+0
Step 4.4.2.2
Subtract 2 from 1.
0-1(0+1⋅-1+0)+1|121102211|+0
0-1(0+1⋅-1+0)+1|121102211|+0
0-1(0+1⋅-1+0)+1|121102211|+0
Step 4.5
Simplify the determinant.
Step 4.5.1
Multiply -1 by 1.
0-1(0-1+0)+1|121102211|+0
Step 4.5.2
Subtract 1 from 0.
0-1(-1+0)+1|121102211|+0
Step 4.5.3
Add -1 and 0.
0-1⋅-1+1|121102211|+0
0-1⋅-1+1|121102211|+0
0-1⋅-1+1|121102211|+0
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
Step 5.1.4
Multiply element a21 by its cofactor.
-1|2111|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
Step 5.1.6
Multiply element a22 by its cofactor.
0|1121|
Step 5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
Step 5.1.8
Multiply element a23 by its cofactor.
-2|1221|
Step 5.1.9
Add the terms together.
0-1⋅-1+1(-1|2111|+0|1121|-2|1221|)+0
0-1⋅-1+1(-1|2111|+0|1121|-2|1221|)+0
Step 5.2
Multiply 0 by |1121|.
0-1⋅-1+1(-1|2111|+0-2|1221|)+0
Step 5.3
Evaluate |2111|.
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1⋅-1+1(-1(2⋅1-1⋅1)+0-2|1221|)+0
Step 5.3.2
Simplify the determinant.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Multiply 2 by 1.
0-1⋅-1+1(-1(2-1⋅1)+0-2|1221|)+0
Step 5.3.2.1.2
Multiply -1 by 1.
0-1⋅-1+1(-1(2-1)+0-2|1221|)+0
0-1⋅-1+1(-1(2-1)+0-2|1221|)+0
Step 5.3.2.2
Subtract 1 from 2.
0-1⋅-1+1(-1⋅1+0-2|1221|)+0
0-1⋅-1+1(-1⋅1+0-2|1221|)+0
0-1⋅-1+1(-1⋅1+0-2|1221|)+0
Step 5.4
Evaluate |1221|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1⋅-1+1(-1⋅1+0-2(1⋅1-2⋅2))+0
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Multiply 1 by 1.
0-1⋅-1+1(-1⋅1+0-2(1-2⋅2))+0
Step 5.4.2.1.2
Multiply -2 by 2.
0-1⋅-1+1(-1⋅1+0-2(1-4))+0
0-1⋅-1+1(-1⋅1+0-2(1-4))+0
Step 5.4.2.2
Subtract 4 from 1.
0-1⋅-1+1(-1⋅1+0-2⋅-3)+0
0-1⋅-1+1(-1⋅1+0-2⋅-3)+0
0-1⋅-1+1(-1⋅1+0-2⋅-3)+0
Step 5.5
Simplify the determinant.
Step 5.5.1
Simplify each term.
Step 5.5.1.1
Multiply -1 by 1.
0-1⋅-1+1(-1+0-2⋅-3)+0
Step 5.5.1.2
Multiply -2 by -3.
0-1⋅-1+1(-1+0+6)+0
0-1⋅-1+1(-1+0+6)+0
Step 5.5.2
Add -1 and 0.
0-1⋅-1+1(-1+6)+0
Step 5.5.3
Add -1 and 6.
0-1⋅-1+1⋅5+0
0-1⋅-1+1⋅5+0
0-1⋅-1+1⋅5+0
Step 6
Step 6.1
Simplify each term.
Step 6.1.1
Multiply -1 by -1.
0+1+1⋅5+0
Step 6.1.2
Multiply 5 by 1.
0+1+5+0
0+1+5+0
Step 6.2
Add 0 and 1.
1+5+0
Step 6.3
Add 1 and 5.
6+0
Step 6.4
Add 6 and 0.
6
6