Algebra Examples

Find the Determinant
[0121110210100211]⎢ ⎢ ⎢ ⎢0121110210100211⎥ ⎥ ⎥ ⎥
Step 1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Tap for more steps...
Step 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣ ∣ ∣ ∣++++++++∣ ∣ ∣ ∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|102010211|∣ ∣102010211∣ ∣
Step 1.4
Multiply element a11a11 by its cofactor.
0|102010211|0∣ ∣102010211∣ ∣
Step 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|121010211|∣ ∣121010211∣ ∣
Step 1.6
Multiply element a21a21 by its cofactor.
-1|121010211|1∣ ∣121010211∣ ∣
Step 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|121102211|∣ ∣121102211∣ ∣
Step 1.8
Multiply element a31a31 by its cofactor.
1|121102211|1∣ ∣121102211∣ ∣
Step 1.9
The minor for a41a41 is the determinant with row 44 and column 11 deleted.
|121102010|∣ ∣121102010∣ ∣
Step 1.10
Multiply element a41a41 by its cofactor.
0|121102010|0∣ ∣121102010∣ ∣
Step 1.11
Add the terms together.
0|102010211|-1|121010211|+1|121102211|+0|121102010|0∣ ∣102010211∣ ∣1∣ ∣121010211∣ ∣+1∣ ∣121102211∣ ∣+0∣ ∣121102010∣ ∣
0|102010211|-1|121010211|+1|121102211|+0|121102010|
Step 2
Multiply 0 by |102010211|.
0-1|121010211|+1|121102211|+0|121102010|
Step 3
Multiply 0 by |121102010|.
0-1|121010211|+1|121102211|+0
Step 4
Evaluate |121010211|.
Tap for more steps...
Step 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Tap for more steps...
Step 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
Step 4.1.4
Multiply element a21 by its cofactor.
0|2111|
Step 4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
Step 4.1.6
Multiply element a22 by its cofactor.
1|1121|
Step 4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
Step 4.1.8
Multiply element a23 by its cofactor.
0|1221|
Step 4.1.9
Add the terms together.
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
Step 4.2
Multiply 0 by |2111|.
0-1(0+1|1121|+0|1221|)+1|121102211|+0
Step 4.3
Multiply 0 by |1221|.
0-1(0+1|1121|+0)+1|121102211|+0
Step 4.4
Evaluate |1121|.
Tap for more steps...
Step 4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1(0+1(11-21)+0)+1|121102211|+0
Step 4.4.2
Simplify the determinant.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Multiply 1 by 1.
0-1(0+1(1-21)+0)+1|121102211|+0
Step 4.4.2.1.2
Multiply -2 by 1.
0-1(0+1(1-2)+0)+1|121102211|+0
0-1(0+1(1-2)+0)+1|121102211|+0
Step 4.4.2.2
Subtract 2 from 1.
0-1(0+1-1+0)+1|121102211|+0
0-1(0+1-1+0)+1|121102211|+0
0-1(0+1-1+0)+1|121102211|+0
Step 4.5
Simplify the determinant.
Tap for more steps...
Step 4.5.1
Multiply -1 by 1.
0-1(0-1+0)+1|121102211|+0
Step 4.5.2
Subtract 1 from 0.
0-1(-1+0)+1|121102211|+0
Step 4.5.3
Add -1 and 0.
0-1-1+1|121102211|+0
0-1-1+1|121102211|+0
0-1-1+1|121102211|+0
Step 5
Evaluate |121102211|.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
Step 5.1.4
Multiply element a21 by its cofactor.
-1|2111|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
Step 5.1.6
Multiply element a22 by its cofactor.
0|1121|
Step 5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
Step 5.1.8
Multiply element a23 by its cofactor.
-2|1221|
Step 5.1.9
Add the terms together.
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0
Step 5.2
Multiply 0 by |1121|.
0-1-1+1(-1|2111|+0-2|1221|)+0
Step 5.3
Evaluate |2111|.
Tap for more steps...
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1-1+1(-1(21-11)+0-2|1221|)+0
Step 5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.1
Multiply 2 by 1.
0-1-1+1(-1(2-11)+0-2|1221|)+0
Step 5.3.2.1.2
Multiply -1 by 1.
0-1-1+1(-1(2-1)+0-2|1221|)+0
0-1-1+1(-1(2-1)+0-2|1221|)+0
Step 5.3.2.2
Subtract 1 from 2.
0-1-1+1(-11+0-2|1221|)+0
0-1-1+1(-11+0-2|1221|)+0
0-1-1+1(-11+0-2|1221|)+0
Step 5.4
Evaluate |1221|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1-1+1(-11+0-2(11-22))+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Multiply 1 by 1.
0-1-1+1(-11+0-2(1-22))+0
Step 5.4.2.1.2
Multiply -2 by 2.
0-1-1+1(-11+0-2(1-4))+0
0-1-1+1(-11+0-2(1-4))+0
Step 5.4.2.2
Subtract 4 from 1.
0-1-1+1(-11+0-2-3)+0
0-1-1+1(-11+0-2-3)+0
0-1-1+1(-11+0-2-3)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Simplify each term.
Tap for more steps...
Step 5.5.1.1
Multiply -1 by 1.
0-1-1+1(-1+0-2-3)+0
Step 5.5.1.2
Multiply -2 by -3.
0-1-1+1(-1+0+6)+0
0-1-1+1(-1+0+6)+0
Step 5.5.2
Add -1 and 0.
0-1-1+1(-1+6)+0
Step 5.5.3
Add -1 and 6.
0-1-1+15+0
0-1-1+15+0
0-1-1+15+0
Step 6
Simplify the determinant.
Tap for more steps...
Step 6.1
Simplify each term.
Tap for more steps...
Step 6.1.1
Multiply -1 by -1.
0+1+15+0
Step 6.1.2
Multiply 5 by 1.
0+1+5+0
0+1+5+0
Step 6.2
Add 0 and 1.
1+5+0
Step 6.3
Add 1 and 5.
6+0
Step 6.4
Add 6 and 0.
6
6
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay