Algebra Examples
A=[123456789]
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]
Step 2
Step 2.1
Calculate the minor for element a11.
Step 2.1.1
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5689|
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a11=5⋅9-8⋅6
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 5 by 9.
a11=45-8⋅6
Step 2.1.2.2.1.2
Multiply -8 by 6.
a11=45-48
a11=45-48
Step 2.1.2.2.2
Subtract 48 from 45.
a11=-3
a11=-3
a11=-3
a11=-3
Step 2.2
Calculate the minor for element a12.
Step 2.2.1
The minor for a12 is the determinant with row 1 and column 2 deleted.
|4679|
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a12=4⋅9-7⋅6
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 4 by 9.
a12=36-7⋅6
Step 2.2.2.2.1.2
Multiply -7 by 6.
a12=36-42
a12=36-42
Step 2.2.2.2.2
Subtract 42 from 36.
a12=-6
a12=-6
a12=-6
a12=-6
Step 2.3
Calculate the minor for element a13.
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
|4578|
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a13=4⋅8-7⋅5
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 4 by 8.
a13=32-7⋅5
Step 2.3.2.2.1.2
Multiply -7 by 5.
a13=32-35
a13=32-35
Step 2.3.2.2.2
Subtract 35 from 32.
a13=-3
a13=-3
a13=-3
a13=-3
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2389|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=2⋅9-8⋅3
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 9.
a21=18-8⋅3
Step 2.4.2.2.1.2
Multiply -8 by 3.
a21=18-24
a21=18-24
Step 2.4.2.2.2
Subtract 24 from 18.
a21=-6
a21=-6
a21=-6
a21=-6
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1379|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=1⋅9-7⋅3
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 9 by 1.
a22=9-7⋅3
Step 2.5.2.2.1.2
Multiply -7 by 3.
a22=9-21
a22=9-21
Step 2.5.2.2.2
Subtract 21 from 9.
a22=-12
a22=-12
a22=-12
a22=-12
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1278|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=1⋅8-7⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 8 by 1.
a23=8-7⋅2
Step 2.6.2.2.1.2
Multiply -7 by 2.
a23=8-14
a23=8-14
Step 2.6.2.2.2
Subtract 14 from 8.
a23=-6
a23=-6
a23=-6
a23=-6
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2356|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=2⋅6-5⋅3
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 6.
a31=12-5⋅3
Step 2.7.2.2.1.2
Multiply -5 by 3.
a31=12-15
a31=12-15
Step 2.7.2.2.2
Subtract 15 from 12.
a31=-3
a31=-3
a31=-3
a31=-3
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1346|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=1⋅6-4⋅3
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 6 by 1.
a32=6-4⋅3
Step 2.8.2.2.1.2
Multiply -4 by 3.
a32=6-12
a32=6-12
Step 2.8.2.2.2
Subtract 12 from 6.
a32=-6
a32=-6
a32=-6
a32=-6
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1245|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=1⋅5-4⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 5 by 1.
a33=5-4⋅2
Step 2.9.2.2.1.2
Multiply -4 by 2.
a33=5-8
a33=5-8
Step 2.9.2.2.2
Subtract 8 from 5.
a33=-3
a33=-3
a33=-3
a33=-3
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[-36-36-126-36-3]
[-36-36-126-36-3]