Algebra Examples
[14337-1-2112]⎡⎢⎣14337−1−2112⎤⎥⎦
Step 1
Step 1.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
Step 1.1.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
[1433-3⋅17-3⋅4-1-3⋅3-2112]⎡⎢⎣1433−3⋅17−3⋅4−1−3⋅3−2112⎤⎥⎦
Step 1.1.2
Simplify R2R2.
[1430-5-10-2112]⎡⎢⎣1430−5−10−2112⎤⎥⎦
[1430-5-10-2112]⎡⎢⎣1430−5−10−2112⎤⎥⎦
Step 1.2
Perform the row operation R3=R3+2R1R3=R3+2R1 to make the entry at 3,13,1 a 00.
Step 1.2.1
Perform the row operation R3=R3+2R1R3=R3+2R1 to make the entry at 3,13,1 a 00.
[1430-5-10-2+2⋅11+2⋅412+2⋅3]⎡⎢⎣1430−5−10−2+2⋅11+2⋅412+2⋅3⎤⎥⎦
Step 1.2.2
Simplify R3R3.
[1430-5-100918]⎡⎢⎣1430−5−100918⎤⎥⎦
[1430-5-100918]⎡⎢⎣1430−5−100918⎤⎥⎦
Step 1.3
Multiply each element of R2R2 by -15−15 to make the entry at 2,22,2 a 11.
Step 1.3.1
Multiply each element of R2R2 by -15−15 to make the entry at 2,22,2 a 11.
[143-15⋅0-15⋅-5-15⋅-100918]⎡⎢
⎢⎣143−15⋅0−15⋅−5−15⋅−100918⎤⎥
⎥⎦
Step 1.3.2
Simplify R2R2.
[1430120918]⎡⎢⎣1430120918⎤⎥⎦
[1430120918]⎡⎢⎣1430120918⎤⎥⎦
Step 1.4
Perform the row operation R3=R3-9R2R3=R3−9R2 to make the entry at 3,23,2 a 00.
Step 1.4.1
Perform the row operation R3=R3-9R2R3=R3−9R2 to make the entry at 3,23,2 a 00.
[1430120-9⋅09-9⋅118-9⋅2]⎡⎢⎣1430120−9⋅09−9⋅118−9⋅2⎤⎥⎦
Step 1.4.2
Simplify R3R3.
[143012000]⎡⎢⎣143012000⎤⎥⎦
[143012000]⎡⎢⎣143012000⎤⎥⎦
Step 1.5
Perform the row operation R1=R1-4R2R1=R1−4R2 to make the entry at 1,21,2 a 00.
Step 1.5.1
Perform the row operation R1=R1-4R2R1=R1−4R2 to make the entry at 1,21,2 a 00.
[1-4⋅04-4⋅13-4⋅2012000]⎡⎢⎣1−4⋅04−4⋅13−4⋅2012000⎤⎥⎦
Step 1.5.2
Simplify R1R1.
[10-5012000]⎡⎢⎣10−5012000⎤⎥⎦
[10-5012000]⎡⎢⎣10−5012000⎤⎥⎦
[10-5012000]⎡⎢⎣10−5012000⎤⎥⎦
Step 2
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11a11 and a22a22
Pivot Columns: 11 and 22
Step 3
The basis for the column space of a matrix is formed by considering corresponding pivot columns in the original matrix. The dimension of Col(A)Col(A) is the number of vectors in a basis for Col(A)Col(A).
Basis of Col(A)Col(A): {[13-2],[471]}⎧⎪⎨⎪⎩⎡⎢⎣13−2⎤⎥⎦,⎡⎢⎣471⎤⎥⎦⎫⎪⎬⎪⎭
Dimension of Col(A)Col(A): 22