Algebra Examples
A=⎡⎢⎣−22−2−101⎤⎥⎦ , x=⎡⎢⎣−120−4⎤⎥⎦
Step 1
Write as an augmented matrix for Ax=⎡⎢⎣−120−4⎤⎥⎦.
⎡⎢
⎢⎣−22−12−2−1001−4⎤⎥
⎥⎦
Step 2
Step 2.1
Multiply each element of R1 by −12 to make the entry at 1,1 a 1.
Step 2.1.1
Multiply each element of R1 by −12 to make the entry at 1,1 a 1.
⎡⎢
⎢⎣−12⋅−2−12⋅2−12⋅−12−2−1001−4⎤⎥
⎥⎦
Step 2.1.2
Simplify R1.
⎡⎢
⎢⎣1−16−2−1001−4⎤⎥
⎥⎦
⎡⎢
⎢⎣1−16−2−1001−4⎤⎥
⎥⎦
Step 2.2
Perform the row operation R2=R2+2R1 to make the entry at 2,1 a 0.
Step 2.2.1
Perform the row operation R2=R2+2R1 to make the entry at 2,1 a 0.
⎡⎢
⎢⎣1−16−2+2⋅1−1+2⋅−10+2⋅601−4⎤⎥
⎥⎦
Step 2.2.2
Simplify R2.
⎡⎢
⎢⎣1−160−31201−4⎤⎥
⎥⎦
⎡⎢
⎢⎣1−160−31201−4⎤⎥
⎥⎦
Step 2.3
Multiply each element of R2 by −13 to make the entry at 2,2 a 1.
Step 2.3.1
Multiply each element of R2 by −13 to make the entry at 2,2 a 1.
⎡⎢
⎢⎣1−16−13⋅0−13⋅−3−13⋅1201−4⎤⎥
⎥⎦
Step 2.3.2
Simplify R2.
⎡⎢
⎢⎣1−1601−401−4⎤⎥
⎥⎦
⎡⎢
⎢⎣1−1601−401−4⎤⎥
⎥⎦
Step 2.4
Perform the row operation R3=R3−R2 to make the entry at 3,2 a 0.
Step 2.4.1
Perform the row operation R3=R3−R2 to make the entry at 3,2 a 0.
⎡⎢
⎢⎣1−1601−40−01−1−4+4⎤⎥
⎥⎦
Step 2.4.2
Simplify R3.
⎡⎢
⎢⎣1−1601−4000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−1601−4000⎤⎥
⎥⎦
Step 2.5
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
Step 2.5.1
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
⎡⎢
⎢⎣1+0−1+1⋅16−401−4000⎤⎥
⎥⎦
Step 2.5.2
Simplify R1.
⎡⎢
⎢⎣10201−4000⎤⎥
⎥⎦
⎡⎢
⎢⎣10201−4000⎤⎥
⎥⎦
⎡⎢
⎢⎣10201−4000⎤⎥
⎥⎦
Step 3
Write the matrix as a system of linear equations.
x=2
y=−4
0=0
Step 4
Write the solutions as a set of vectors.
{[2−4]}