Algebra Examples

Find Any Equation Perpendicular to the Line
17x+2y=017x+2y=0
Step 1
Choose a point that the perpendicular line will pass through.
(0,0)(0,0)
Step 2
Solve 17x+2y=017x+2y=0.
Tap for more steps...
Step 2.1
Subtract 17x17x from both sides of the equation.
2y=-17x2y=17x
Step 2.2
Divide each term in 2y=-17x2y=17x by 22 and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in 2y=-17x2y=17x by 22.
2y2=-17x22y2=17x2
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
2y2=-17x22y2=17x2
Step 2.2.2.1.2
Divide yy by 11.
y=-17x2y=17x2
y=-17x2y=17x2
y=-17x2y=17x2
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Move the negative in front of the fraction.
y=-17x2y=17x2
y=-17x2y=17x2
y=-17x2y=17x2
y=-17x2y=17x2
Step 3
Find the slope when y=-17x2y=17x2.
Tap for more steps...
Step 3.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 3.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 3.1.2
Write in y=mx+by=mx+b form.
Tap for more steps...
Step 3.1.2.1
Reorder terms.
y=-(172x)y=(172x)
Step 3.1.2.2
Remove parentheses.
y=-172xy=172x
y=-172xy=172x
y=-172xy=172x
Step 3.2
Using the slope-intercept form, the slope is -172172.
m=-172m=172
m=-172m=172
Step 4
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-172mperpendicular=1172
Step 5
Simplify -1-1721172 to find the slope of the perpendicular line.
Tap for more steps...
Step 5.1
Cancel the common factor of 11 and -11.
Tap for more steps...
Step 5.1.1
Rewrite 11 as -1(-1)1(1).
mperpendicular=--1-1-172mperpendicular=11172
Step 5.1.2
Move the negative in front of the fraction.
mperpendicular=1172mperpendicular=1172
mperpendicular=1172mperpendicular=1172
Step 5.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(217)mperpendicular=1(217)
Step 5.3
Multiply 217217 by 11.
mperpendicular=217mperpendicular=217
Step 5.4
Multiply --217217.
Tap for more steps...
Step 5.4.1
Multiply -11 by -11.
mperpendicular=1(217)mperpendicular=1(217)
Step 5.4.2
Multiply 217217 by 11.
mperpendicular=217mperpendicular=217
mperpendicular=217mperpendicular=217
mperpendicular=217mperpendicular=217
Step 6
Find the equation of the perpendicular line using the point-slope formula.
Tap for more steps...
Step 6.1
Use the slope 217217 and a given point (0,0)(0,0) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)yy1=m(xx1), which is derived from the slope equation m=y2-y1x2-x1m=y2y1x2x1.
y-(0)=217(x-(0))y(0)=217(x(0))
Step 6.2
Simplify the equation and keep it in point-slope form.
y+0=217(x+0)y+0=217(x+0)
y+0=217(x+0)y+0=217(x+0)
Step 7
Write in y=mx+by=mx+b form.
Tap for more steps...
Step 7.1
Solve for yy.
Tap for more steps...
Step 7.1.1
Add yy and 00.
y=217(x+0)y=217(x+0)
Step 7.1.2
Simplify 217(x+0)217(x+0).
Tap for more steps...
Step 7.1.2.1
Add xx and 00.
y=217xy=217x
Step 7.1.2.2
Combine 217217 and xx.
y=2x17y=2x17
y=2x17y=2x17
y=2x17y=2x17
Step 7.2
Reorder terms.
y=217xy=217x
y=217xy=217x
Step 8
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay