Algebra Examples
17x+2y=0
Step 1
Choose a point that the parallel line will pass through.
(1,0)
Step 2
Step 2.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 2.2
Subtract 17x from both sides of the equation.
2y=−17x
Step 2.3
Divide each term in 2y=−17x by 2 and simplify.
Step 2.3.1
Divide each term in 2y=−17x by 2.
2y2=−17x2
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of 2.
Step 2.3.2.1.1
Cancel the common factor.
2y2=−17x2
Step 2.3.2.1.2
Divide y by 1.
y=−17x2
y=−17x2
y=−17x2
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Move the negative in front of the fraction.
y=−17x2
y=−17x2
y=−17x2
Step 2.4
Write in y=mx+b form.
Step 2.4.1
Reorder terms.
y=−(172x)
Step 2.4.2
Remove parentheses.
y=−172x
y=−172x
y=−172x
Step 3
Using the slope-intercept form, the slope is −172.
m=−172
Step 4
To find an equation that is parallel, the slopes must be equal. Find the parallel line using the point-slope formula.
Step 5
Use the slope −172 and a given point (1,0) to substitute for x1 and y1 in the point-slope form y−y1=m(x−x1), which is derived from the slope equation m=y2−y1x2−x1.
y−(0)=−172⋅(x−(1))
Step 6
Simplify the equation and keep it in point-slope form.
y+0=−172⋅(x−1)
Step 7
Step 7.1
Add y and 0.
y=−172⋅(x−1)
Step 7.2
Simplify −172⋅(x−1).
Step 7.2.1
Apply the distributive property.
y=−172x−172⋅−1
Step 7.2.2
Combine x and 172.
y=−x⋅172−172⋅−1
Step 7.2.3
Multiply −172⋅−1.
Step 7.2.3.1
Multiply −1 by −1.
y=−x⋅172+1(172)
Step 7.2.3.2
Multiply 172 by 1.
y=−x⋅172+172
y=−x⋅172+172
Step 7.2.4
Move 17 to the left of x.
y=−17x2+172
y=−17x2+172
Step 7.3
Write in y=mx+b form.
Step 7.3.1
Reorder terms.
y=−(172x)+172
Step 7.3.2
Remove parentheses.
y=−172x+172
y=−172x+172
y=−172x+172
Step 8