Algebra Examples

4x+5x>3
Step 1
Subtract 3 from both sides of the inequality.
4x+5x-3>0
Step 2
Simplify 4x+5x-3.
Tap for more steps...
Step 2.1
To write -3 as a fraction with a common denominator, multiply by xx.
4x+5x-3xx>0
Step 2.2
Combine -3 and xx.
4x+5x+-3xx>0
Step 2.3
Combine the numerators over the common denominator.
4x+5-3xx>0
Step 2.4
Subtract 3x from 4x.
x+5x>0
x+5x>0
Step 3
Find all the values where the expression switches from negative to positive by setting each factor equal to 0 and solving.
x=0
x+5=0
Step 4
Subtract 5 from both sides of the equation.
x=-5
Step 5
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
x=0
x=-5
Step 6
Consolidate the solutions.
x=0,-5
Step 7
Find the domain of x+5x.
Tap for more steps...
Step 7.1
Set the denominator in x+5x equal to 0 to find where the expression is undefined.
x=0
Step 7.2
The domain is all values of x that make the expression defined.
(-,0)(0,)
(-,0)(0,)
Step 8
Use each root to create test intervals.
x<-5
-5<x<0
x>0
Step 9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 9.1
Test a value on the interval x<-5 to see if it makes the inequality true.
Tap for more steps...
Step 9.1.1
Choose a value on the interval x<-5 and see if this value makes the original inequality true.
x=-8
Step 9.1.2
Replace x with -8 in the original inequality.
4(-8)+5-8>3
Step 9.1.3
The left side 3.375 is greater than the right side 3, which means that the given statement is always true.
True
True
Step 9.2
Test a value on the interval -5<x<0 to see if it makes the inequality true.
Tap for more steps...
Step 9.2.1
Choose a value on the interval -5<x<0 and see if this value makes the original inequality true.
x=-2
Step 9.2.2
Replace x with -2 in the original inequality.
4(-2)+5-2>3
Step 9.2.3
The left side 1.5 is not greater than the right side 3, which means that the given statement is false.
False
False
Step 9.3
Test a value on the interval x>0 to see if it makes the inequality true.
Tap for more steps...
Step 9.3.1
Choose a value on the interval x>0 and see if this value makes the original inequality true.
x=2
Step 9.3.2
Replace x with 2 in the original inequality.
4(2)+52>3
Step 9.3.3
The left side 6.5 is greater than the right side 3, which means that the given statement is always true.
True
True
Step 9.4
Compare the intervals to determine which ones satisfy the original inequality.
x<-5 True
-5<x<0 False
x>0 True
x<-5 True
-5<x<0 False
x>0 True
Step 10
The solution consists of all of the true intervals.
x<-5 or x>0
Step 11
The result can be shown in multiple forms.
Inequality Form:
x<-5orx>0
Interval Notation:
(-,-5)(0,)
Step 12
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay