Algebra Examples

Find the Maximum/Minimum Value
f(x)=x2-4x+2f(x)=x24x+2
Step 1
The minimum of a quadratic function occurs at x=-b2ax=b2a. If aa is positive, the minimum value of the function is f(-b2a)f(b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=b2a
Step 2
Find the value of x=-b2ax=b2a.
Tap for more steps...
Step 2.1
Substitute in the values of aa and bb.
x=--42(1)x=42(1)
Step 2.2
Remove parentheses.
x=--42(1)x=42(1)
Step 2.3
Simplify --42(1)42(1).
Tap for more steps...
Step 2.3.1
Cancel the common factor of -44 and 22.
Tap for more steps...
Step 2.3.1.1
Factor 22 out of -44.
x=-2-221x=2221
Step 2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.1.2.1
Factor 22 out of 2121.
x=-2-22(1)x=222(1)
Step 2.3.1.2.2
Cancel the common factor.
x=-2-221
Step 2.3.1.2.3
Rewrite the expression.
x=--21
Step 2.3.1.2.4
Divide -2 by 1.
x=--2
x=--2
x=--2
Step 2.3.2
Multiply -1 by -2.
x=2
x=2
x=2
Step 3
Evaluate f(2).
Tap for more steps...
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=(2)2-42+2
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Raise 2 to the power of 2.
f(2)=4-42+2
Step 3.2.1.2
Multiply -4 by 2.
f(2)=4-8+2
f(2)=4-8+2
Step 3.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 3.2.2.1
Subtract 8 from 4.
f(2)=-4+2
Step 3.2.2.2
Add -4 and 2.
f(2)=-2
f(2)=-2
Step 3.2.3
The final answer is -2.
-2
-2
-2
Step 4
Use the x and y values to find where the minimum occurs.
(2,-2)
Step 5
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay